Advanced search
Start date
Betweenand


Vascular effects induced by C-type natriuretic peptide (CNP) on aorta from normotensive and renovascular hypertensive rats.

Full text
Author(s):
Laena Pernomian
Total Authors: 1
Document type: Master's Dissertation
Press: Ribeirão Preto.
Institution: Universidade de São Paulo (USP). Faculdade de Medicina de Ribeirão Preto (PCARP/BC)
Defense date:
Examining board members:
Lusiane Maria Bendhack; Eliana Hiromi Akamine; Rita de Cassia Aleixo Tostes Passaglia
Advisor: Lusiane Maria Bendhack
Abstract

C-type natriuretic peptide (CNP) acts as a vasodilator agonist that relaxes vascular smooth muscle cells from arteries and veins, and it can be produced and released from the vascular endothelium by several stimuli. This peptide induces vascular relaxation through interaction with its receptor which is associated with particulate guanylyl cylase (pGC), leading to the increase in cGMP levels or it can also can interacts with NPR-C receptor associated with the inhibition of adenylyl cyclase and the activation of phospholipase C and K+ channels, via Gi protein. This vasodilation is related to partially involves NO-sGC-cGMP and intracellular calcium mobilization. 2K-1C hypertension is related to NO consumption, in the cellular environment through reaction with reactive oxygen species (ROS), mainly superoxide anion (O2-), characterizing impaired endothelium-dependent relaxation. So, in view of the changes in renovascular hypertension 2K-1C through oxidative stress and the importance of CNP like a vasodilator agonist, the hypothesis of the present work was on thoracic aorta isolated from renal hypertensive rats (2K-1C) the vascular relaxation induced by CNP would be impaired due to oxidative stress. In this context, the study aimed to demonstrate the cellular mechanisms involved on vascular responses induced by CNP. Endothelial cells isolated from 2K-1C rat aortas showed decreased [NO]c compared to 2K, suggesting endothelial dysfunction. In the presence of O2- scavenger (Tiron) there was the participation of this anion on endothelial cells from 2K-1C, but not on 2K ones. CNP caused relaxation of aortic rings from 2K and 2K-1C rats which was enhanced on denuded rings from 2K-1C. Hydroxicobalamine (NO0 scavenger) but not L-NAME (NOS inhibitor) decreased the potency of CNP on intact aortic rings from 2K-1C. ODQ (sGC inhibitor) decreased potency in intact vascular rings from 2K, just reducing maximum effect and Hill number on denuded aortic rings from 2K-1C to a control level. In the presence of selective GK inhibitor (Rp-8-Br-PET-cGMPS) occurred an attenuation of CNP potency in all experimental groups, but the maximum effect of CNP was reduced only in aortic rings without endothelial layer. SERCA inhibition decreased CNP potency of all experimental groups, but maximum effect was reduced on 2K-1C to control levels. Under pre-contraction elicited by EC50 of potassium chloride (KCl) solution there was a decreased CNP potency and maximum effect in all experimental groups. However, the presence of selective inhibitor of K+ channels showed the contribution of BKCa and SKCa on 2K and 2K-1C and KV on 2K-1C in the CNP induced relaxation. NAD(P)H-oxidase inhibition (Apocinin) was able to normalize maximum effect of CNP on denuded vessels from 2K-1C. Myoendothelial gap junctions inhibition (18--glicirrhetinic acid) reduced CNP potency on intact aortic rings from 2K. Finally, the non-selective COX inhibition (Indometacin) induced a lower CNP potency on intact aortic rings from 2K. The analysis of the data obtained from isolated endothelial cells and functional studies allow us to conclude the participation of natriuretic peptide system in the modulation of vascular tone on aortic rings isolated from 2K and 2K-1C rats. Thus, the vascular relaxation induced by CNP is not impaired on aortic rings isolated from 2K-1C. Vascular endothelium negatively modulates the relaxation induced by CNP on 2K and 2K-1C rat aortas. Although 2K-1C exhibits endothelial dysfunction, it is not sufficient to impair calcium mobilization induced by CNP. CNP induced relaxation involves NOS metabolites and NO0 specie, as well as the activity of NAD(P)H oxidase, sGC, GK and SERCA is related to the enhanced vasodilator effect induced by CNP on 2K-1C. Similarly, CNP pathway leads to K+ channels activation in both experimental groups and the signal mediation through myoendothelial gap junctions on 2K aortas, but not on 2K-1C ones. (AU)

FAPESP's process: 10/02754-4 - Effects of the C-type natriuretic peptide in the calcium intracellular signaling on isolated aorta endothelial cells from normotensive and renal hypertensive rats
Grantee:Laena Pernomian
Support Opportunities: Scholarships in Brazil - Master