Advanced search
Start date
Betweenand


Molecular characterization of INC-1, an inhibitor of protein phosphatase type 1 Neurospora crassa

Full text
Author(s):
Daniela Beton
Total Authors: 1
Document type: Master's Dissertation
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Conjunto das Químicas (IQ e FCF) (CQ/DBDCQ)
Defense date:
Examining board members:
Aline Maria Da Silva; Maria Celia Bertolini; Sandro Roberto Marana
Advisor: Aline Maria Da Silva
Abstract

Type 1 protein serine/threonine phosphatases (PP1) play important roles in the regulation of many cellular functions including metabolism, cell growth and division, protein synthesis and pre-mRNA splicing. PP1 holoenzyme consists of one highly conserved catalytic subunit (PP1c) and variable regulatory subunits. A number of proteins that interact with PP1c have been described in mammals and the respective holoenzymes present distinct substrate specificity and/or different subcelular localization. Among the proteins that interact with PP1c, there are many with inhibitory effect such as inhibitor-1 (I-1) and inhibitor-2 (1-2). It has been demonstrated that a protein denominated INc-1, purified from Neurospora crassa extracts, specifically inhibits PP1c and has biochemical properties that resemble those of mammalian I-2. INc-1 is the first example of a PP1c regulatory subunit in filamentous fungi. Partial amino acid sequences of INc-1 led to the identification of an ORF (open reading frame) in Neurospora crassa genome which appears to encode INc-1. This ORF shows similarity with mammalian I-2 mainly in regions mapped as sites for interaction with PP1c. In this work we report the cloning and bacterial expression of the coding sequence for INc-1. The PP1c inhibitory activities of two recombinant isoforms, named INc-1L and INc-1, were compared. INc-1L aminoacid sequence presents an in frame segment of 38 residues encoded by an non-processed intron. 80th recombinant proteins showed inhibitory effect against phosphorylase phosphatase activity of recombinant PP1c, with IC50 of ~50nM for INc-1L and ~11nM for INc-1, suggesting that retention of the 38 residue segment decrease the inhibitory potential of INc-1L. We have also verified that INc-1 mRNA is expressed during N.crassa vegetative growth with maximum level at the exponential phase. (AU)