Advanced search
Start date
Betweenand


Comparative proteomic characterization of platelet aggregation induced by thrombin and PA-BJ, a serine proteinase from the venom of Bothrops jararaca

Full text
Author(s):
Ana Karina de Oliveira
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Conjunto das Químicas (IQ e FCF) (CQ/DBDCQ)
Defense date:
Examining board members:
Solange Maria de Toledo Serrano; Sayuri Miyamoto; Daniel Martins de Souza; Alexandre Keiji Tashima
Advisor: Solange Maria de Toledo Serrano
Abstract

Platelets are anucleated cell fragments derived from megakaryocytes which are involved in many physiological and pathological processes, such as coagulation, inflammation, thrombosis, atherosclerosis, and tumor angiogenesis and metastasis. To perform these functions, activated platelets secrete a soluble fraction of molecules present in their granules, which then interact with other molecules and cells adjacent to the site of injury, and with platelet receptors. However, the mechanisms governing secretion in platelets are still poorly understood. Therefore, the objective of this study was to comparatively analyze the aggregation of platelets activated by two different enzyme agonists: thrombin, one of the most important platelet agonists, and PA-BJ, a serine proteinase from Bothrops jararaca venom, which, like thrombin, causes platelet aggregation mediated by the receptors PAR-1 and PAR-4. For this purpose, approaches of mass spectrometry and bioinformatics were used to characterize changes in the proteome of non-activated and activated platelets, and also to analyze proteins and peptides present in the supernatant of aggregated platelets (secretome). In the analysis of the sediment of platelets activated by PA-BJ and thrombin, various proteins, such as PBP, PF4, protein S, fibronectin, factor V, and alpha-1 antitrypsin, were detected in lower abundance while they were also identified as secreted, in the supernatant; likewise, proteins that are directly involved in the activation/aggregation, such as ADAM-10, thromboxane A2 synthase, integrin αIIb, myosin-9 and phosphorylase b were identified in higher abundance in platelets activated by PA-BJ and thrombin. Moreover, we found that in the thrombin-induced platelet secretion there was increased abundance of proteins involved in the regulation of blood clot formation, such as protein S, and antithrombin III PAI1, suggesting that in the events triggered by thrombin, there is strict regulation of its action at the site of vascular injury. In the analysis of the secretion induced by PA-BJ, we found a significant increase in amyloid beta A4 protein and fibrinogen, which are involved in the platelet activation/aggregation, in addition to the release and activation of MMP-1, indicating that this metalloproteinase acts synergistically with PA-BJ in the formation and stabilization of the platelet thrombus. In the analysis of the non-activated platelet secretome, we identified for the first time the presence of catalase, carbonic anhydrase, leukocyte elastase inhibitor and histidine-rich glycoprotein, which are involved in the inhibition and regulation of platelet activation. The analysis of the peptide fraction of the supernatant of activated platelets enabled the characterization, for the first time, of the degradome generated in the process of aggregation by thrombin and PA-BJ. The resulting set of peptides generated upon platelet activation by PA-BJ is larger and more complex than that generated by the action of thrombin, suggesting that the pathways activated by both are differential and are subject to different controls of proteolysis. Furthermore, the selective degradation of some proteins, and the set of generated peptides could play a role in the control of platelet activation and aggregation. Taken together, our findings demonstrate that although both PA-BJ and thrombin induce platelet aggregation via PAR-1 and PAR-4, these enzymes activate different pathways to cause platelet secretion and aggregation. (AU)

FAPESP's process: 10/17328-0 - Comparative proteomic characterization of platelet aggregation induced by thrombin and PA-BJ, a serine proteinase from the venom of Bothrops jararaca.
Grantee:Ana Karina de Oliveira
Support Opportunities: Scholarships in Brazil - Doctorate