Exoplanets atmospheres: the impact of stellar activity on the transmission spectra
Selection of planetary candidates based on the CoRoT mission
Photoionized nebulae, stars and the chemical evolution of galaxies
![]() | |
Author(s): |
Thiago Matheus
Total Authors: 1
|
Document type: | Master's Dissertation |
Press: | São Paulo. |
Institution: | Universidade de São Paulo (USP). Instituto Astronômico e Geofísico (IAG/SBD) |
Defense date: | 2010-05-25 |
Examining board members: |
Eduardo Janot Pacheco;
Jane Cristina Gregorio Hetem;
Carlos Alberto Pinto Coelho de Oliveira Torres
|
Advisor: | Eduardo Janot Pacheco |
Abstract | |
Current models of planetary formation suggest that the giant gaseous planets are formed in time scales of ~ 10 Myr, less than the rocky ones, in time scales of ~ 30 Myr (Zuckerman & Song 2004). A simple test of these models of formation it would look for planets around young stars of various ages: in younger systems it should not detect terrestrial objects, which only appear around stars relatively older. CoRoT and Kepler satellites, which are at full system of observations, have been discovering exoplanets by the method of transits, being able to detect Earth-size bodies. The goal of this work is to select young planetary systems of various ages to be observed by the two satellites, in order to test the time scales of formation of rocky and gaseous planets. To achieve this goal it was necessary to understand how age can be estimated for a group of stars (open cluster or association), using, for example, data on chemical abundances of lithium objects. This is possible because of the ease of lithium to be destroyed in the pre-main sequence, at temperatures above 2,5 10^6 K. A sample survey of the abundance of lithium as a function of temperature for stars belonging to a group, generates a lithium depletion pattern, which creates a qualitatively model (da Silva et al. 2009) to obtain ages of star associations. For the purpose of this study was reached, the databases of objects in youth associations with well-determined ages from (Torres et al. 2008) was used, as well, the catalog DAML from (Dias et al. 2002) of open clusters. The selection of data for each satellite has produced quite different results. For CoRoT, the analysis of the database of associations returned results with a association in the galactic center and another with ~ 70 Myr in the anti-Galactic center, on the other hand, in the field of Kepler did not find young objects that would enable meet the goals of this work.. In the analysis of DAML catalog of open clusters have emerged many candidates targeted for observations. For the CoRoT was concluded that the clusters NGC 2244 of 7,87 Myr, NGC 2264 of 8,99 Myr, Collinder 107 of 10 Myr, Collinder 96 of 10,74 Myr, and NGC 2302 of 12,02 Myr contain targets where should be found only gas giant planets in the early stage and/or end of formation, in accordance with Chapter 1. The relatively older clusters, where they must be found rocky and gaseous planets are: NGC 6755 of 52,36 Myr, Basel 1 of 78,16 Myr, NGC 6694 of 85,31 Myr, NGC 2186 of 54,70 Myr, NGC 2422 of 72,61 Myr e Bochum 3 de 77,62 Myr. Therefore the step of selecting targets to be observed by the CoRoT was made, and thus, any observational results serve as a test for the timescales of planet formation proposed in the current models. For Kepler, it did not find any member of young cluster observed in its field of vision and its range of magnitudes. (AU) |