Advanced search
Start date
Betweenand


Brunnian braid groups and homotopy groups of the sphere S2

Full text
Author(s):
Oscar Eduardo Ocampo Uribe
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Instituto de Matemática e Estatística (IME/SBI)
Defense date:
Examining board members:
Daciberg Lima Goncalves; Tomas Edson Barros; John Guaschi; Alcibiades Rigas; Daniel Vendruscolo
Advisor: Daciberg Lima Goncalves
Abstract

The relation between surface braid groups and homotopy groups of spheres is currently a subject of great interest. Considerable progress has been made in recent years in the study of these relations in the case of the n-string Artin braid groups, denoted by Bn, the sphere and the projective plane. In this thesis we analyse in detail the interactions between braid theory and homotopy theory, and we present new results that establish connections between the homotopy groups of the 2-sphere S2 and the braid groups of any surface. During the course of this work, we discovered an unexpected connection of braid groups with crystallographic and Bieberbach groups: for n greater or equal than 3, the quotient group Bn/[Pn, Pn] is a crystallographic group that contains Bieberbach groups as subgroups, where Pn is the pure braid subgroup of Bn. This enables us to obtain a formulation of a theorem of Auslander and Kuranishi for finite 2-groups, and to exhibit Riemannian compact flat manifolds that admit Anosov diffeomorphisms and whose holonomy group is Z2k. In addition, during the thesis, we have detected, and where possible, corrected some inaccuracies in two important papers in the area of study, by J. Berrick, F. R. Cohen, Y. L. Wong and J. Wu (Jour. Amer. Math. Soc. - 2006), and by J. Y. Li and J. Wu (Proc. London Math. Soc. - 2009). (AU)