Tensoactives and polymers: dynamic and chemical and photochemical reactivity
Studies of the Copigmentation of compounds analogous to anthocyanins
![]() | |
Author(s): |
Adilson Alves de Freitas
Total Authors: 1
|
Document type: | Doctoral Thesis |
Press: | São Paulo. |
Institution: | Universidade de São Paulo (USP). Conjunto das Químicas (IQ e FCF) (CQ/DBDCQ) |
Defense date: | 2005-12-09 |
Examining board members: |
Frank Herbert Quina;
Josef Wilhelm Baader;
Antonio Carlos Borin;
Paulo Marcos Donate;
Marcelo Henrique Gehlen
|
Advisor: | Frank Herbert Quina |
Abstract | |
Anthocyanins comprise the major water-soluble pigment group in the Plant Kingdom. Light absorption by these compounds is responsible for the diverse colors in many flowers and fruits and can be modulated by phenomena such as self-association of flavylium cations or anhydrobases, copigmentation with other polyphenols and flavonoids, complexation with metal ions, incorporation of anthocyanins into microaggregates like micelles and the pH of the medium. The chemical and photochemical reactivity of anthocyanins is quite complex in aqueous solution and each process occurs in a different time range. The use of structurally simplified synthetic flavylium salts permits a certain control over the mole fractions of the various species in solution. In this study we used the synthetic flavylium ions 4-carboxy-7-hydroxy-4\'-methoxyflavylium (CHMF), 2-phenylbenzopyrylium and 4´-methoxyflavylium to investigate the main processes that influence the acid-base equilibrium and hydration of the flavylium cation in micellar environments. Such reactions play a central role in color stabilization of anthocyanins. CHMF has two ionizable groups with distinct pKas (pKa1 = 0,73; pKa2 = 4,84), and the protonation/deprotonation dynamics of these groups are affected differently by SDS micelles. The results show that SDS micelles stabilize the cationic form rather than the zwitterion (pKa1SDS = 2,77), which is favored relative to the quinonoidal base (pKa2SDS = 5,64). The preferential stabilization of the cation is related to electrostatic interactions of this form with the anionic micelle. The quinonoidal base, which in the specific case of CHMF is an anion, is disfavored relative to the zwitterion. In addition, the hydrolysis of the zwitterionic form is substantially reduced in micellar SDS solutions. The comparison of 2-phenylbenzopyrylium (pKw = 3,01) and 4´-methoxyflavylium (pKw = 4,47) shows that the methoxy group at the C4´ position stabilizes the cationic form, reducing the hydration by charge transfer to the central ring. The stabilization of the cationic form by the micellar environment, which is reflected in the increase of the pKw, is more pronounced for the 2-phenylbenzopyrylium cation (pKwSDS = 4,73) than for 4´-methoxyflavylium (pKwSDS = 5,05). Kinetic studies of the 2-phenylbenzopyrylium ion in SDS indicate a 65-fold reduction in the hydration rate constant (kw), while the inverse reaction has the same magnitude as in water. In the case of the 4´-methoxyflavylium ion, both rate constants associated with the equilibrium between the flavylium cation and hemicetal increased. However, the [H+]-dependent rate constant for dehydration of the hemicetal is affected to a greater extent, increasing about 15 fold, indicating stabilization of the 4\'-methoxyflavylium cation by the micellar interface. Finally, computational calculations were performed at the ab initio level for several flavylium cations and anhydrobases to estimate the electronic transitions, pKa and reduction potentials. The quality of the calculated pKa results were compared with experimental data and the mean absolute deviation is +/- 0.5 pKa unit. (AU) |