Use of 3D Printing on the Fabrication of Microfluidic Devices
Development of a Lab-on-a-chip for glutamate analysis in Foodstuffs
![]() | |
Author(s): |
Carlos Antonio Neves
Total Authors: 1
|
Document type: | Doctoral Thesis |
Press: | São Paulo. |
Institution: | Universidade de São Paulo (USP). Conjunto das Químicas (IQ e FCF) (CQ/DBDCQ) |
Defense date: | 2005-09-23 |
Examining board members: |
Claudimir Lúcio do Lago;
Emanuel Carrilho;
Luiz Otávio Saraiva Ferreira;
Jonas Gruber;
Pedro Antonio Muniz Vazquez
|
Advisor: | Claudimir Lucio do Lago |
Abstract | |
The Microchip Capillary Electrophoresis (µCE or MCE) is a different kind of capillary electrophoresis that has been growing. This technique uses devices made with small plates of glass or polymer with a microchannel instead of a silica capilar. Improvements in time analysis, sample volumes, physical dimensions, power consume, and integrability with diferent systems have been archieved. A diferent microfabrication technique using laser printer toner and polyester sheets was used to build devices for microfluidic devices. This tecnique is simple, fast and suitable for prototyping. In this work were developed instruments for use with these toner-polyester microdevices. High-voltage and current sources were developed using high-voltage conversors (DC/HVDC). The programming was obtained by electric voltages from a data acquisition board and a digital-analogic conversor (DAC) with a I2C interface communication. Its control was made in a GNU/Linux System. An hidrodynamic injector was developed using an air compressor with a pulse dumper. The internal pressure was regulated by water column. An electronic manometer was built and calibrated with a water manometer. Recording of pressure using -10, -1, +1, and +10cm water column using different injection times were acquired with a data acquisition system. The data show that when water columns of ca. 10cm and injection times greater than 3 seconds are used, the relative standard deviation (RSD) is about 0.5% in modulus. A different way to build vials is presented. This method uses a silicone mantle and plastic glass block with holes. As a result, channels are stragled due to the poliester sheets. A new way to build electrodes for capacitively coupled contactless conductivity detection (C4D) using printed circuit boards (PCB) is shown. After the corrosion of the copper board, varnish is applied on the board to planify its surface. This configuration is simple and allows good integrability with the electronic circuit. Electrophoretic tests using the instrumentation developed was performed by separation of 100µM K+, Na+ and Li+ solutions in 2mM HLac/His buffer. This solutions were injected by electrokinetic method and separated using 20mM HLac/His buffer under high-voltage. The three species were detected but not quantified due to irreprodutibilities of the electrokinetic injection with high mobility ions. Demonstrative separations of K+ and Na+ were made with the same chemical system and blood samples without pretreatment. Isotacophoretic separations of 1mM K+, Na+, and Li+ in 1mM HCl (leader electrolyte) and 1mM tetramethylammonium (terminate electrolyte) were carried outto demonstrate the system functionality. (AU) |