Advanced search
Start date
Betweenand


Advances and challenges in biocatalysis of organosilicon compounds

Full text
Author(s):
Dayvson José Palmeira de Souza
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Conjunto das Químicas (IQ e FCF) (CQ/DBDCQ)
Defense date:
Examining board members:
Leandro Helgueira de Andrade; Reinaldo Camino Bazito; Marcio Weber Paixão; Cristiano Raminelli; Cassius Vinicius Stevani
Advisor: Leandro Helgueira de Andrade
Abstract

By combining both enzymatic reactions and organosilicon compounds, we aimed to explore the potential of these substrates in biocatalytic reactions. The main goal was to expand the scope of substrates and breakthrough new transformations. Initially the study was based on the use of hydrolases in reactions involving organosilanes, in which lipases were the focus of our contribution. Thus, enzymatic kinetic resolution (EKR) of chiral benzylic alcohols containing silicon and other heteroatoms (phosphorus and tin) was explored and efficient enantioselective transesterifications were achieved, in which both acetylated products and remaining alcohols were obtained in excellent enantiomeric excesses (e.e. > 99% in all cases). Considerations about the structure/activity relationship of lipase-catalyzed reactions were done, and it was found out that silicon-containing compounds can react faster than those phosphorus- or tin-containing analogues. Then, an extension of EKR was the dynamic kinetic resolution (DKR). Several experiments were performed using lipase and different racemization catalysts: ruthenium complexes and a cation exchange resin. Although racemization by ruthenium catalysts have been found, in our studies inactivation of the catalyst during the process was a problem that was not possible to be solved. A cation exchange resin was used in racemization, and depending on the substrate it was possible to perform efficient DKRs (yield up to 93% and e.e. up to 96%) via an enzymatic esterification using an acylating agent with long chain. Another work with hydrolases was the enzymatic acylation of silanols. From the interesting results involving the acylation of an aryl-silanol (75% conversion to the acetoxy-silane derivative, by CAL-B), the acylation of a racemic benzyl-silanol was performed and although the substrate has been successfuly acetylated by a series of lipases (up to 47% conversion to the acetoxy-silane derivative under the conditions studied), the reaction occurred without any enantioselectivity. In reactions involving oxidoreductases, both mono-oxygenases and enzymes from the bacterium Arthrobacter sp., were used as biocatalysts. In an attempt to carry out the oxidation of the C-Si bond using BVMOs, it was found out that the instability of the substrates in aqueous media could set an obstacle in the development of the methodology. Moreover, evidence of enzymatic oxidation of Si-H bond were observed for two aryl substrates, which can serve as guidance for future projects involving the topic. Finally, whole cells of the bacterium Arthrobacter sp. were used for (R)- selective deracemization of alcohols and (S)-selective reduction of ketones, both using silicon-, phosphorus-, tin- and boron-containing substrates. Transformations with high enantioselectivity were achieved, showing the versatility of Arthrobacter sp. in mediating enantiocomplementary reactions. (AU)

FAPESP's process: 11/01376-9 - Enzymatic Reactions Studies Involving Silicon and Tin Organic Compounds
Grantee:Dayvson José Palmeira de Souza
Support Opportunities: Scholarships in Brazil - Doctorate