Teleportation of quantum information between different colors
Entanglement among the transverse modes of an Optical Parametric Oscillator
Studying the quantum state of the field at the threshold of the optical parametric...
![]() | |
Author(s): |
Bruno Ferreira de Camargo Yabu uti
Total Authors: 1
|
Document type: | Master's Dissertation |
Press: | Campinas, SP. |
Institution: | Universidade Estadual de Campinas (UNICAMP). Instituto de Física Gleb Wataghin |
Defense date: | 2007-08-31 |
Examining board members: |
José Antonio Roversi;
Salomon Sylvain Mizrahi;
Kyoko Furuya
|
Advisor: | José Antonio Roversi |
Abstract | |
In this work, we study the dynamics of the entanglement between two remote atoms in distinct cavities. The main focus is the production of maximal entangled states between identical atoms of two levels in distinct cavities and, in particular, coupled cavities. Initially we present the main concepts of the Theory of Quantum Information, qualitative and quantitative aspects of the quantum entanglement, after that we consider the physical system: atoms in cavities. We present the Jaynes-Cummings model (JCM) and make one brief analysis of the entan-glement that appears due to such atom-field interaction. In the system of two uncoupled cavities we present how to generate entanglement between remote atoms in conditional form. We introduce the system formed by two coupled cavities interacting with identical atoms, fact that corresponds to identical coupling constant (g1= g2). The atom-field interaction is still described by the JCM and the system of coupled cavities can be modeled by the Zoubi et. al.¿s proposal [1] (for separate cavities for an environment for a short distance) or for the Pellizzari¿s proposal [2] (for cavities connected by a optical fiber). For appropriate choices of parameters in each case, the dynamics of the two systems is equivalent to the interaction of atoms with a mono-mode field. Due to the apparent simplicity, we investigate the dynamics of the entanglement between distant atoms, including the generation of maximal entangled states (essential for the processing of quantum information, quantum communication [3] and distributed quantum computation [4,5] ) in determinist form and without necessity of an indirect interaction between the modes of the cavities to generate a shared entangled initial state (AU) |