Advanced search
Start date
Betweenand


Development of chitosan membranes with photosensitizers incorporated aiming water disinfection

Full text
Author(s):
Cintia Ramos Camargo
Total Authors: 1
Document type: Master's Dissertation
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Escola de Engenharia de São Carlos (EESC/SBD)
Defense date:
Examining board members:
Janice Rodrigues Perussi; Ana Maria de Guzzi Plepis; Eny Maria Vieira
Advisor: Janice Rodrigues Perussi
Abstract

Methods of water disinfection aim to inactivate pathogens in order to minimize the risk of waterborne diseases. These methods include treatment with ultraviolet light and chemical processes, for which chlorine, chlorine dioxide, hypochlorite and ozone are commonly used. However, modern analytical methods reveal that these standard methods of water disinfection may lead to the formation of toxic and potentially carcinogenic products. Thus, developing suitable methods for water disinfection is a necessity. Photodynamic inactivation is a new approach to eliminate pathogenic microorganisms. Basically, this process uses photosensitizers and light to promote a phototoxic response, normally oxidative, capable of damaging biomolecules and cellular structures, causing the death of microorganisms. However, the photosensitizer cannot remain free as a contaminant in this type of application. The objective of this study was to develop chitosan membranes with incorporated photosensitizers aiming the microbiological water disinfection. The membranes were prepared by incorporating methylene blue, rose bengal, meso-tetrakis (4-N-methylpyridyl)-porphine or the 5,10,15,20-tetrakis(p-aminophenyl)- porphyrin. The efficiency of the Photodynamic Inactivation with photosensitizers incorporated into the membrane was investigated using the bacteria Escherichia coli as a model, since this bacteria is commonly present in drinking water. The results showed that, among the four photosensitizers incorporated into chitosan membranes, the process employing the TMPyP was more effective: 5 log reduction after 120 minutes of irradiation with white LED and 4 log reduction after 120 and 140 minutes of irradiation with blue and yellow LED, respectively. Moreover, in order to simulate a real situation of disinfection, a water circulation system, containing TMPyP/chitosan membranes reinforced with nylon, was employed. The results showed that the process of photoinactivation using a dynamic system was effective, with about 3 log reduction in 80 minutes of irradiation with white LED. These results suggest that the process is effective to inactivate bacterial contaminants in water using photosensitizers incorporated into chitosan as a polymeric support. (AU)

FAPESP's process: 10/04569-0 - Evaluation of the action of photosensitizers immobilized on chitosan in photodynamic inactivation of Escherichia coli bacteria present in drinking water
Grantee:Cintia Ramos Camargo
Support Opportunities: Scholarships in Brazil - Master