Advanced search
Start date
Betweenand


Prospection of volatile organic compounds and their effects on physiological self-regulation in cyanobacteria.

Full text
Author(s):
Simone Vieira da Silva
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Conjunto das Químicas (IQ e FCF) (CQ/DBDCQ)
Defense date:
Examining board members:
Ernani Pinto; Viviane Moschini Carlos; Marli de Fatima Fiore; Uelinton Manoel Pinto
Advisor: Ernani Pinto
Abstract

There are several studies on the presence of cyanobacteria and the correlation between environmental factors that may influence or trigger blooms. However, information concerning the physiological and biochemical control of the production of secondary metabolites, toxins and volatile organic compounds (VOC) by cyanobacteria is poorly understood. Geosmin and 2-methyl-isoborneolare are commonly found VOC in cyanobacteria, they resist to conventional water treatment and can cause bad smell and taste in the final water. In addition, VOC can bioaccumulate in fish and shellfish. Studies on possible competition systems (allelopathy) either among strains of cyanobacteria or among them and other organisms such as green microalgae, may help to elucidate the role of VOC production by cyanobacteria. Thus, the main objectives of this study are: (i) prospect the production of VOCs and their effects on physiological self-regulation in cyanocrobacteria kept in the laboratory; and (ii) to develop an analytical method, by solid phase microextraction (SPME) and gas chromatography with mass spectrometry detection (GC-MS), for the determination of these compounds. The assays were carried out to evaluate the production profiles of VOCs in two strains of M. aeruginosa at different growth stages under different light intensities (50, 150 and 250 µmol.fótons.m-2.s-1) and also along of the circadian rhythm, evaluating the influence of light and dark periods. To assess allelopathic effects, exudates from a microcystin-producing strain of M. aeruginosa were tested on cultures of another non-toxin producing M. aeruginosa strain by traditional growth monitoring culture techniques. In the analysis of VOC production by GC-MS, it was observed that α-cyclocyclal, β-cyclocyclal and β-ionone compounds were the most prominent, with β-cyclocitral being the most abundant in all conditions tested, for both strains studied. The non-toxigenic lineage, however, showed higher production of all the identified compounds. Among the light intensities tested, the intensity of 250 µmol.fótons.m-2s-1 was the one with the highest growth rate and positive relation between the irradiance increase and the β-cyclocitral production. Variations in the production of the α-cyclocyclal, β-cyclocyclal and β-ionone compounds were also identified in the lines along the circadian rhythm, being the highest concentrations found in the dark period. Cell death and reduction in VOC production were observed 24 hours after addition of exudates belonging to the toxigenic M. aeruginosa lineage in cultures of the non-toxigenic lineage. Thus, it can be inferred that the production of VOCs can undergo qualitative and quantitative changes depending on the environmental stimulus present, both by biotic interactions (with other organisms and circadian rhythm) and by abiotic factors (luminous intensity). (AU)

FAPESP's process: 13/05969-0 - Prospecting of volatile organic compounds produced by cyanobacteria and their effects on self-regulation of physiological Microcystis sp.
Grantee:Simone Vieira da Silva
Support Opportunities: Scholarships in Brazil - Doctorate