Advanced search
Start date
Betweenand


Tryptophan oxidation by singlet molecular oxygen [(O2(1Δg): mechanistic studies using isotopic labelling, mass spectrometry analysis and chemiluminescence

Full text
Author(s):
Graziella Eliza Ronsein
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Conjunto das Químicas (IQ e FCF) (CQ/DBDCQ)
Defense date:
Examining board members:
Paolo Di Mascio; Maurício da Silva Baptista; Etelvino José Henriques Bechara; Ana Campa; Luis Eduardo Soares Netto
Advisor: Paolo Di Mascio
Abstract

Proteins have been considered important targets for reactive oxygen species. Indeed, tryptophan (W) has been shown to be a highly susceptible amino acid to many oxidizing agents, including singlet molecular oxygen (1O2). The reaction of 1O2 with W has long been a matter of concern, and has recently attracted considerably more attention because W-derived oxidation products such as N-formylkynurenine (FMK) and kynurenine (kn) have been associated with some pathological conditions such as the development of cataracts and the formation of covalent aggregates of superoxide dismutase, which has been implicated in amyotrophic lateral sclerosis. Despite the intense interest in the mechanism of W oxidation, there are a lot of gaps that remains to be elucidated. In this context, the current study was undertaken to investigate the chemical basis involved in W oxidation by 1O2. We are concerned about the chemistry of the initially formed hydroperoxides, their stability, further reactions and the mechanism leading to FMK conversion. With this purpose, two cis and trans tryptophan hydroperoxide (WOOH) isomers were completely characterized by HPLC/mass spectrometry and NMR analyses as the major W-oxidation photoproducts. Also, they were shown to be relatively stable at ambient and physiological temperatures, leading to a slow decomposition to the corresponding alcohols. Increasing the pH or heating the solutions gives rise to a luminescent decomposition of the WOOH to FMK. Using 18O-labeled hydroperoxides (W18O18OH), it was possible to confirm the formation of a two-oxygen-labeled FMK molecule derived from W18O18OH decomposition. This result shows that both oxygen atoms in FMK are derived from the hydroperoxide group. In addition, these reactions are chemiluminescent (CL), indicating a dioxetane cleavage pathway. This mechanism was confirmed since the CL spectrum of the WOOH decomposition matched the FMK fluorescence spectrum, unequivocally identifying FMK as the emitting species. Diastereoisomeric dioxindoyalanine were also characterized as oxidation products derived from the reaction of W with 1O2. The involvement of radicals in this reaction was excluded. In summary, this work offers further insights into the chemistry involved in W-oxidation, through the characterization of photoproducts and the detailed investigation about the decomposition mechanism of these products. (AU)