Synthesis, characterization and investigation of photoinduced properties of Re(I) ...
![]() | |
Author(s): |
Fabio Monaro Engelmann
Total Authors: 1
|
Document type: | Master's Dissertation |
Press: | São Paulo. |
Institution: | Universidade de São Paulo (USP). Conjunto das Químicas (IQ e FCF) (CQ/DBDCQ) |
Defense date: | 2001-03-28 |
Examining board members: |
Koiti Araki;
Gianluca Camillo Azzellini;
Marcelo Henrique Gehlen
|
Advisor: | Koiti Araki |
Abstract | |
The preparation, characterization and photophysical and photochemical properties of a series of meso-(phenylpyridyl)porphyrins, with n phenyl and 4n pyridyl substituents (n =1 to 4), and the respective supermolecular species obtained by the coordination of [Ru{2,2\'-bipy)2Cl]+ complexes to the pyridine nitrogen atoms, are described. The results of the spectroscopic and electrochemical studies were consistent . with the proposed molecular structures. The occurrence of energy transfer processes from the MLCT3 state of the peripheral ruthenium complexes to the porphyrin singlet state in ethanol glass, and to the triplet state at room temperature, were observed. These strongly suggest that the excited MLCT3 state is energetically above the porphyrin S1 state (77 K), and that there is a sufficiently strong electronic interaction between the ruthenium complexes and the porphyrin ring. The energy transfer from MLCT3 to the porphyrin S1 state is inefficient at room temperature, because ofthe fast non-radiactive deactivation of that excited state. This was confirmed by the excitation spectra, that exhibited only the absorption bands ofthe porphyrin moiety. The fluorescence quantum yield of the porphyrin is decreased in presence of dissolved O2, and this behavior seems to be inversely proportional to the number of pyridyl substituents. Furthermore, the lifetime, the quenching rate constant by 02 and the singlet oxygen quantum yields for the porphyrin triplet state, seems to be independent of the number of [Ru(bipy)2Cl]+ complexes coordinated to the ring. No photodecomposition were observed during the above experiments. The singlet oxygen quantum yields (~O,5) determined for the supermolecular porphyrins are comparable to that of other porphyrin type photosensitizers used in studies on photodynamic terapy. Consequently, the strategy of coordinating ruthenium bipyridyl complexes as modifiers ofthe meso-(phenylpyridyl)porphyrins and also as new interaction sites, for example for biomolecules, seems adequate for the preparation of new supermolecular photosensitizers. (AU) |