Odorant receptors: mechanisms of gene expression and signal transduction
Identification of human and chimpanzee olfactory receptors ligands
![]() | |
Author(s): |
Luiz Eduardo Cabral Von Dannecker
Total Authors: 1
|
Document type: | Doctoral Thesis |
Press: | São Paulo. |
Institution: | Universidade de São Paulo (USP). Conjunto das Químicas (IQ e FCF) (CQ/DBDCQ) |
Defense date: | 2006-08-07 |
Examining board members: |
Bettina Malnic;
Célia Regina da Silva Garcia;
Frederico José Gueiros Filho;
Regina Pekelmann Markus;
Alexander Henning Ulrich
|
Advisor: | Bettina Malnic |
Abstract | |
Odorants are detected by a large family of odorant receptors (ORs) expressed in the olfactory neurons in the nose. The activated receptors couple to an olfactory-specific G-protein (Galphaolf), which activates adenylyl cyclase III to produce cAMP. Increased cAMP levels activate cyclic nucleotide-gated channels, causing cell membrane depolarization. The information provided by the odorant receptors is transmitted to specific regions of the brain leading to odorant perception. The determination of the odorant specificities of the different ORs will contribute to the understanding of how odorants are discriminated by the olfactory system. However, only a few ORs have been linked to odorants they recognized to date because ORs are not efficiently expressed in heterologous cells since they are poorly expressed on the cell surface. Here we used yeast two-hybrid to search for potential regulators for Galphaolf. We found that Ric-8B (for Resistant to Inhibitors of Cholinesterase), a putative GTP exchange factor, is able to interact with Gaolf. Like Gaolf, Ric-8B is predominantly expressed in the mature olfactory sensory neurons and also in a few regions in the brain. The highly restricted and colocalized expression patterns of Ric-8B and Galphaolf strongly indicate that Ric-8B is a functional partner for Galphaolf. We show that Ric-8B is able to potentiate Galphaolf-dependent cAMP accumulation in human embryonic kidney 293 cells and therefore may be an important component for odorant signal transduction. Finally, we show that Ric-8B promotes efficient heterologous expression of ORs. Our results show that Ric-8B enhances accumulation of Galphaolf at the cell cortex, indicating that it promotes functional OR expression probably by improving the efficiency of OR coupling to Galphaolf. Our results demonstrate that the employment of Ric-8B in a high-throughput system will allow the functional screening of the OR family members and thereby provide further insight into the mechanisms of odor perception. (AU) |