Advanced search
Start date
Betweenand


Mechanisms and applicalions of organic peroxide chemiluminescence

Full text
Author(s):
Erick Leite Bastos
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Conjunto das Químicas (IQ e FCF) (CQ/DBDCQ)
Defense date:
Examining board members:
Josef Wilhelm Baader; Etelvino Jose Henriques Bechara; Marcelo Henrique Gehlen; Adriana Vitorino Rossi; Omar Abdel Moneim Abou El Seoud
Advisor: Josef Wilhelm Baader
Abstract

The chemiluminescence resulting from induced decomposition of 1,2-dioxetanes and the peroxyoxalate system can be explained by the Chemically Initiated Electron Exchange Luminescence - CIEEL mechanism. This hypothesis postulates an electron transfer followed by a bond cleavage or rearrangement and back electron transfer which can occur in a intra or intermolecular way, depending on the system. The chemiexcitation step in the peroxyoxalate system involves an intermolecular back electron transfer, in which two radical ions participates - one of them is assumed to be carbon dioxide radical anion. However, there is no consensus about the back electron transfer path in the induced decomposition of 1,2-dioxetanes, which Can occur in an intra or intermolecular way. This work reports the synthesis of seven 1,2-dioxetane derivatives, the results obtained in the investigation of the chemiexcitation path proposed by the CIEEL mechanism for the induced decomposition of 1,2-dioxetanes and for the peroxyoxalate system, and the application of poly(vinylpirrolidone) supported luminol chemiluminescence in the development of a rnicroplate luminometer calibration method. It was possible to confirm, by the study of solvent viscosity effect on singlet quantum yields in induced 1,2-dioxetane decomposition, a dependence between chemiexcitation efficiency and the solvent cavity effect, which was rationalized based on a diffusional and frictional model. These results, together with theoretical calculations, allow us to postulate a modified intermolecular chemiexcitation mechanism for the induced decomposition of 1,2-dioxetanes. An attempt to detect directly the carbon di oxide radical anion in the peroxyoxalate system was made based on the electron paramagnetic resonance detection of the α-phenyl-N-tert-butylnitrone (PBN)-CO2 adduct. Despite small discrepancies between the observed and the previously reported hyperfine coupling constant values, the adduct characterization was confirmed by direct injection mass spectrometry. Finally, a microplate luminometer light intensity calibration system, based on polymeric matrix-supported luminal, was developed. This method can be used also to determine hydrogen peroxide at µ mol-1 concentration and to quantify reducing agents with antiradical and antioxidant potential. (AU)