Advanced search
Start date
Betweenand


Honey bee (Apis mellifera) Juvenile Hormone Esterase Gene Structure and its Rule During Post-Embryonic Development and Caste Differentiation.

Full text
Author(s):
Aline Mackert dos Santos
Total Authors: 1
Document type: Master's Dissertation
Press: Ribeirão Preto.
Institution: Universidade de São Paulo (USP). Faculdade de Medicina de Ribeirão Preto (PCARP/BC)
Defense date:
Examining board members:
Zila Luz Paulino Simoes; Maria Cristina Arias; Klaus Hartmann Hartfelder
Advisor: Zila Luz Paulino Simoes
Abstract

The juvenile hormones (JH) are a class of sesquiterpenoids that play a crucial role in insect development. JH modulate the activity of ecdysone, preparing for metamorphosis at the end of the larval phase. The titers of this hormone are mainly determined by synthesis in the corpora allata and by the hydrolytic activity of a specific esterase (JHE - Juvenile Hormone Esterase), a carboxylesterase family member (3.1.1.1), which transforms JH into a metabolite considered inactive (JHacid). JH is intimately involved in Apis mellifera development and caste differentiation; the hormone titers differ considerably in developing queens and workers. The ORESTES (Open-Reading-Frame-Expressed-Sequence-Tags) methodology was used to obtain the JHE gene sequence. Twenty six clone sequences that showed homology with JHEs of other insects were used to construct specific primers to perform RT-PCR, in order to analyze JHE gene expression. The fragment amplified using these primers showed high identity with the JHE of Drosophila melanogaster and Tenebrio molitor at amino acid level. First strand cDNA was synthesized using total RNA and used as template for PCR. A. mellifera actin gene expression levels were used for normalization. The JHE gene is highly expressed in fat body and gut epithelium. The highest peak of JHE gene expression in workers was observed in the stages before metamorphosis, i.e. L5F and L5S, after which there is a decrease in the gene expression of pre-pupae and young pupae, with a increase at the end of pupal stages, and in the adult stages (until 15 days). The JHE gene activity is extremely related with the JH titers during the development, what suggests the importance of JHE enzyme activity to the normal metamorphosis. We quantified JHE mRNA levels in the castes and sexes of A. mellifera. Workers have the highest JHE gene expression levels during L3, L4, L5F1 and L5S1. In queens, there is an increase of JHE gene expression in pre-pupae, otherwise in works this stage shows a decrease in JHE expression. The lowest expression levels occur in drones. JHE expression is lower when JH is essential for the development of queen characteristics, what occurs during the early phases. Therefore it is possible to establish a direct relationship between JH and JHE mRNA levels during development and maintenance of the characteristics in each caste. The gene shows low expression levels in queens ovaries during larval stages where it may be important to the maintenance of JH levels, in order to protect this organ from degeneration, and to warrant a normal development. Since the levels of JH are different in the castes and sexes, the differential activity of the JHE gene apparently plays a key role in the maintenance of the morphotypes of this complex insect society. The gene was inhibited by 20E application in pupae, so we can suggest that the gene is induced by JH presence like we detected during larval stages and after emergence, and inhibited by ecdysteroids, since the data obtained in this work suggest that the JHE gene is repressed when the ecdysteroids titers are elevated. (AU)