Advanced search
Start date
Betweenand


Molecular and Biochemical Characterization of the proline dehydrogenase of T. cruzi, a possible therapeutical target .

Full text
Author(s):
Lisvane Paes Vieira
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Instituto de Ciências Biomédicas (ICB/SDI)
Defense date:
Examining board members:
Ariel Mariano Silber; Maria Julia Manso Alves; Rui Curi; Jose Roberto Meyer Fernandes; Otavio Henrique Thiemann
Advisor: Ariel Mariano Silber
Abstract

In the present work, we demonstrated the proline dehydrogenase enzymatic activity (PRODH) for the protein encoded by a gene annotated as a proline oxidase in the T. cruzi genome data base. This activity was shown firstly through complementation of a S. cerevisiae lineage lacking its endogenous PRODH gene. The PRODH gene was also expressed in a bacterial system and the active recombinant protein was obtained. Experiments performed with both, complemented yeasts and T. cruzi epimastigotes, showed a correlation between the intracellular free proline levels and the oxidative stress resistance. Quantitative RT-PCR assay revealed that the PRODH gene is differentially expressed across T. cruzi life cycle, being the highest expression level shown by the intracellular epimastigote form, this result was confirmed by Western blotting. Both results are in accordance with the fact that proline is essential for the differentiation of the intracellular epimastigote into trypomastigote. Subcellular localization assays showed that PRODH is present preferentially in the mitochondria. In silico analyses of the PRODH peptidic sequence indicated the presence of an EF-hand domain, wich is, usually, involved in Ca2+ binding. In fact, our results confirm not only the ability of such domain of binding Ca2+ but also its function in the activity regulation. Mitochondrial respiration assays using proline as substrate showed that PRODH transfers electrons and generates FADH2, with an eficience comparable to that of the complex II (Succinate dehydrogenase). Experiments using the T4C, an analogue of proline that inhibits the proline uptake, caused the depletion of the intracellular free proline, which was followed by the significantly decrement of the cellular viability of the parasites under nutritional and oxidative stresses. Taken together, this data suggest that proline transporters are promising drug targets when combined with other drugs that act by generating reactive oxygen species. (AU)