Advanced search
Start date
Betweenand


Identification of threonine and tyrosine residues important for human P2X4 receptor activity by site-directed mutagenesis.

Full text
Author(s):
Arquimedes Cheffer
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Conjunto das Químicas (IQ e FCF) (CQ/DBDCQ)
Defense date:
Examining board members:
Alexander Henning Ulrich; Antonio Carlos Cassola; Shaker Chuck Farah; Fábio Luís Forti; Jorg Kobarg
Advisor: Alexander Henning Ulrich
Abstract

The human P2X4 receptor (ATP-gated ion channel) is widely distributed in the CNS and, after activation, participates in regulation of levels of intracellular calcium through direct permeation and activation of voltage-dependent calcium channels with well-defined functions including synaptic plasticity. Given the importance of the P2X4 receptor, especially in CNS physiology, we investigated the role that specific N- and C-termini residues play in human P2X4 receptor activity, by combining techniques of molecular biology, biochemistry and patch-clamping in human embryonic kidney cells (HEK-293T cells). HEK-293T cells expressing the wild-type P2X4 receptor showed ionic currents whose amplitudes depended on the ATP concentration, providing an EC50 value of 1.37 ± 0.21 mM. E14A and D16A receptor mutants exhibited responses to ATP comparable to those ones of wild-type receptor, whereas Y15A and T17A mutants were not functional, despite being expressed in the plasma membrane of cells. The inhibition of tyrosine phosphatases by pervanadate decreased strongly ATP-induced currents. Subsequent flow cytometry analysis in the presence of an antibody against phosphotyrosine residues indicated that, among the cells that express the P2X4 receptor, the percentage of phosphotyrosine-positive cells was the same for Y372A (86 ± 10%) and Y378A (79 ± 6.9%) mutants, however, substantially lower for Y15A (35 ± 12%), Y367A (48 ± 6.4%) and Y372F (31 ± 1.7%) mutants when compared with cells expressing the wild-type receptor (76 ± 5.6%). Similar results were obtained by quantifying the relative expression of phosphotyrosine proteins. Western blot assays revealed that even the T17A mutant was phosphorylated at threonine residues, suggesting that the human P2X4 receptor also contains further phosphorylation sites. However, no phosphotyrosine-antibody signal was detected in the wild-type receptor and mutants in which tyrosine residues were replaced by alanine or phenylalanine. The residue Y15 is supposedly not the target of such phosphorylation, despite its important structural role. However, the present work indicates that tyrosine phosphorylation of intermediate signaling proteins regulates P2X4 receptor activity. (AU)