Advanced search
Start date
Betweenand


Biophysical, structural and immunological studies of recombinant proteins corresponding to merozoite surface antigens of Plasmodium vivax

Full text
Author(s):
Maria Carolina Sarti Jimenez
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Conjunto das Químicas (IQ e FCF) (CQ/DBDCQ)
Defense date:
Examining board members:
Irene da Silva Soares; João Alexandre Ribeiro Gonçalves Barbosa; Marcelo Urbano Ferreira; Aparecida Sadae Tanaka; Adelaide Jose Vaz
Advisor: Irene da Silva Soares
Abstract

Several merozoite surface proteins (MSPs) of Plasmodium have been considered candidates to compose a vaccine against malaria. In the last years, we have studied severaI aspects of the natural/y acquired immune response against recombinant proteins based on MSPs of P. vivax. These studies demonstrated that the recombinant proteins maintain their immunological functions and could be used for the characterization of their three-dimensional structure. To gain structural information on the MSPs of P. vivax, 10 recombinant proteins corresponding to the C-terminal region of MSP-1 (MSP119) and to different regions of the MSP-3α and MSP-3β were expressed in Escherichia coli. The structural data of the MSP119 were obtained by molecular modeling based on the crystallographic coordinates of the P. cynomolgi MSP119. On the other hand, there is limited structural information available for MSP-3 family of Plasmodium. The analysis of the primary structure of these proteins indicates that they present a central alanine-rich domain organized as heptads repeats. This type of primary structure favors the formation of α-helices and coiled-coil (CC) structures. In the present study, the composition of the secondary structure of each recombinant protein was characterized preliminarily by circular dichroism monitored in the far-UV region. On the basis of the obtained results, we selected two recombinant proteins based on C-terminal region of the MSP-3α (CC4 and CC5) for detailed biophysical analyses. Initially, we demonstrated that the monomer mass assigned for the two recombinant proteins corresponded exactly to those predicted from the primary sequence. However, during size exclusion chromatography, the proteins eluted at volumes corresponding to molecular weights that were much larger than their monomeric masses, suggesting that both proteins are oligomeric molecules. Interestingly, analytical ultracentrifugation experiments showed that the CC5 oligomers are elongated molecules. As the function of these proteins is not known, the structural data obtained in this study can be used to understand the function of these proteins. In the second part of this study, we selected five recombinant proteins for comparative recognition by IgG antibodies of the individuais from endemic areas of malaria vivax. These studies confirmed previous data that the MSPs are imunogenic in natural infections. Together, our results suggest that, as well as the MSP119, that recombinant proteins based on the MSP-3α and MSP-3β can be explored in future studies for the induction of protective immunity against malaria vivax. (AU)