Advanced search
Start date
Betweenand


Condensed tannins as nutritional strategy on methane mitigation from cattle and the animal-soil interface

Full text
Author(s):
Gisele Maria Fagundes
Total Authors: 1
Document type: Doctoral Thesis
Press: Pirassununga.
Institution: Universidade de São Paulo (USP). Faculdade de Zootecnica e Engenharia de Alimentos (FZE/BT)
Defense date:
Examining board members:
Ives Cláudio da Silva Bueno; Teresa Cristina Alves; Renata Helena Branco Arnandes; Ciniro Costa; Sarita Bonagurio Gallo; Ricardo Luiz Moro de Sousa
Advisor: Ives Cláudio da Silva Bueno
Abstract

Brazil occupies a prominent position in cattle beef production and export in the world. However, due to the ruminant\'s contribution to methane emissions in the country, Brazilian livestock farming has been suffering continuous pressure from international communities; and possibly in the future, such emissions, may be grounds for creating barriers to the worldwide export of our meat. In this context, the present study aimed to evaluate the effect of tannins on the methane emissions of rumen beef cattle microbiota as an alternative to chemical rumen modulators. For this, four experiments were performed. In the first assay, condensed tannins (CT) from Flemingia macrophylla, Leucaena leucocephala, Stylosanthes guianensis, Gliricidia sepium, Cratylia argentea, Cajanus cajan, Desmodium ovalifolium, Macrotiloma axilare, Desmodium paniculatum and Lespedeza procumbens in the presence or not of polyethylene glycol (PEG) on the ruminal parameters in the in vitro gas production technique was evaluated. Methane production, concentrations of ammonia and short chain fatty acids (AGCC), microbial quantification and kinetics of ruminal degradation were measured. The species L. leucocephala, D. paniculatum and L. procumbens reduced the production of methane in vitro. The populations of Ruminococcus flavefaciens, methanogenic archeas and protozoa were reduced, while total number of ruminal bacteria and Fibrobacter succinogenes was increased. In the second experiment, intake, digestibility, ruminal parameters, microbial quantification and methane emission were evaluated in Nelore fistulated cattle consuming diets containing 0%, 1,25% and 2,5% TC of acacia extract. Tannin supplementation reduced both daily intake and methane emissions per animal. CT directly suppressed methanogenic archeas community and beneficially altered ruminal populations of F. succinogenes, R. flavefaciens and total bacteria. In the third experiment, bovine manure from the in vivo assay was stored in bench scale biodigesters to assess the effect of tannin-rich feces on the production of biogas and methane. The study showed that tannins had no negative effect on the biogas production from the bovine manure. In the fourth experiment, a greenhouse experiment was carried out to evaluate the effect of tannin-rich feces on the dynamics of soil microbial population. Tannins increased fecal N intake and altered nutrient cycling and soil microbial dynamics. Our study showed that tannins might be a promising nutritional alternative to chemical modulators in the reduction of methanogenesis of beef cattle, contributing positively to the soil-plant-animal relationship and collaborating on the sustainability of livestock farming in tropical systems. (AU)

FAPESP's process: 14/23656-1 - TANNINIFEROUS LEGUMES AS NUTRITIONAL STRATEGY ON METHANE MITIGATION FROM CATTLE AND THE PLANT-ANIMAL-SOIL INTERFACE
Grantee:Gisele Maria Fagundes
Support Opportunities: Scholarships in Brazil - Doctorate