Molecular basis for conformational changes and role of amino acid residues in the ...
![]() | |
Author(s): |
Maria Cicera Pereira da Silva
Total Authors: 1
|
Document type: | Doctoral Thesis |
Press: | São Paulo. |
Institution: | Universidade de São Paulo (USP). Conjunto das Químicas (IQ e FCF) (CQ/DBDCQ) |
Defense date: | 2006-05-09 |
Examining board members: |
Clélia Ferreira Terra;
Iolanda Midea Cuccovia;
Manuel Troyano Pueyo;
Ivarne Luís dos Santos Tersariol;
Carlos Eduardo Winter
|
Advisor: | Clelia Ferreira Terra |
Abstract | |
A soluble trehalase was purified from Spodoptera frugiperda midgut. The pKas of the catalitical groups determined by chemical inactivation agrees with the ones determined by kinetical analysis, indicating that the enzyme has a carboxyl group that acts as a nucleophile and a guanidine group that is the proton donor. Diethyl pyrocarbonate (DPC) does not affect to the enzyme, except in the presence of MalphaGlu (a competitive inhibitor). DPC modification decreases trehalase activity and changes the pKa value of the catalytical Arg residue, indicating that pKa of the proton donor His residue modulates. Trehalase has two subsites for glucose binding and based on the protection by MalphaGlu against chemical modification it is possible to infer that the subsite that binds MalphaGlu contains the catalytic carboxyl, whereas the other has the catalytical Arg residue and the His residue. Using different strategies we succeeded in obtaining a partial sequence of a cDNA that apparently codes for trehalase (called trehalase 1) and in molecular cloning and expressing the enzyme named trehalase 2. Trehalase 2, expressed in Bl21 DE3 cells was purified and its properties are similar to the soluble enzyme. Trehalase 1 cDNA probably codes for a membrane-bound trehalase found in S. frugiperda midgut. Trehalase 2 has 587 amino acids, a signal peptide with 23 amino acids and six possible sites for glycosilation. The enzyme present higher identity and similarity (61% and 76%, respectively) to digestive trehalase of Bombyx mori. Trehalase from body wall, Malpighian tubules, fat body, midgut and haemolymph from Tenebrio molitor, Musca. domestica, Spodoptera frugiperda and Diatraea saccharalis were assayed with and without the presence of toxic glucosides produced by plants. The glucosides used were amygdalin, prunasin, phlorizin and the aglycone mandelonitrile. In addition, T. molitor and S. frugiperda trehalases were assayed with esculin. Prunasin is the best inhibitor in T. molitor and M. domestica, phlorizin in D. saccharalis (only membrane-bound activity) and esculin in S. frugiperda. We fed S. frugiperda with a diet containing 0.1 % esculin and followed its fate by fluorescence. Esculin is recovered from fat body, Malpighian tubules and haemolymph. No esculin was found in body wall. The majority of esculin was recovered in haemolymph (0.2 mM) and larvae fed on esculin-containing diet weigh 40 % less than control ones. Trehalase inhibition by esculin may account for at least part of the observed decrease in larval weight. S. frugiperda larvae reared in 0.1% amygdalin-containing diet present higher trehalase activities in several tissues than the larvae reared in 0.1% esculin-containing diet. Higher trehalase activity should be the reason why S. frugiperda development is affected by esculin, but is not impaired by amygdalin present in the diet. (AU) |