Advanced search
Start date
Betweenand


Characterization of the genome and immune response in the tumor microenvironment of PTEN-deficient cancers

Full text
Author(s):
Thiago Vidotto
Total Authors: 1
Document type: Doctoral Thesis
Press: Ribeirão Preto.
Institution: Universidade de São Paulo (USP). Faculdade de Medicina de Ribeirão Preto (PCARP/BC)
Defense date:
Examining board members:
Jeremy Andrew Squire; Amanda Freire de Assis Riccardi; Vanessa da Silva Silveira
Advisor: Jeremy Andrew Squire
Abstract

Cancer-cell genomes undergo several abnormalities during carcinogenesis. Indeed, many of the tumor-specific genomic changes, such as mutations and chromosomal aberrations, are related to how the host immune system responds to detect and kill tumor cells. In addition to these general effects, loss of function of specific tumor suppressor genes (TSG) contributes to tumor development and progression and at the same time also regulates several facets of the immune response in cancer. For instance, the TSG phosphatase and tensin homolog (PTEN) was shown to directly regulate the anti-viral interferon response by licensing the interferon regulatory factor 3 (IRF3). However, it is still unclear whether PTEN directly influences the immune response through the interferon network or by provoking higher levels of genomic instability. To address this question, we conducted a PanCancer analysis of 33 tumor types from The Cancer Genome Atlas to determine whether there were associations between PTEN inactivation and specific genomic features that are linked to immunosuppressive states in cancer. PTEN inactivation status was determined by combining copy number and point mutation data. Then, we performed a parallel analysis of genomic instability and immune-cell abundances derived from the CIBERSORT algorithm comparing PTEN deficient to intact tumors. We found that PTEN inactivation was strongly associated with enhanced levels of aneuploidy, mutation load, immunogenic mutations, and tumor heterogeneity. Furthermore, we found that the outcome of PTEN inactivation status was highly specific to each tumor type and the induced changes appeared to lead to variation in immune responses in different cancers. Response to current immunotherapeutic approaches depends on the expression of targeted immune checkpoints, and we found that tumors with PTEN deficiency had altered expression of programmed death protein 1 (PD1), its ligand (PDL1), and the immunosuppressive protein indoleamine 2,3-dioxygenase (IDO1). We also found that PTEN inactivation led to a distinct immune-cell composition in the tumor microenvironment, including regulatory T cells and CD8+ T cells. Lastly, we performed an in-depth analysis of the immune-cell content of prostate tumors that harbored PTEN protein loss. Through an in silico analysis of 622 tumors, we found that both primary and metastatic lesions had higher densities of regulatory T cells when PTEN was lost. Then, the analysis of 94 primary prostate tumors from Brazil demonstrated that PTEN protein loss was significantly associated with high Treg density and IDO1 protein expression. Moreover, PTEN-null tumors with high Treg density exhibited the worse outcome among patients. We also found that, depending on the prostate cancer metastatic site, PTEN deficiency was linked to variation in the immunosuppressive immune cell landscape. Collectively, we show that PTEN inactivation associates with the anti-tumor immune response likely through direct avenues (via licensing of IRF3) and indirectly by influencing the genome of cancer cells. Functional studies are required to validate our in silico findings; however, we speculate that determining PTEN inactivation status may allow clinicians to distinguish patients that are more likely to respond to current immunotherapies. (AU)

FAPESP's process: 15/22785-5 - The Role of PTEN Gene Loss in Facilitating the Inflammatory Response in Prostate Cancer
Grantee:Thiago Vidotto
Support Opportunities: Scholarships in Brazil - Doctorate