Advanced search
Start date
Betweenand


Coding region characterization and Hexamerins expression during Apis mellifera development

Full text
Author(s):
Juliana Ramos Martins
Total Authors: 1
Document type: Master's Dissertation
Press: Ribeirão Preto.
Institution: Universidade de São Paulo (USP). Faculdade de Medicina de Ribeirão Preto (PCARP/BC)
Defense date:
Examining board members:
Marcia Maria Gentile Bitondi; Mônica Ferreira Moreira Carvalho Cardoso; Maria Cristina Ramos Costa
Advisor: Marcia Maria Gentile Bitondi
Abstract

The cDNAs encoding the hexamerins HEX 70a, HEX 70c and HEX 110 of Apis mellifera were synthesized from total RNA isolated, cloned and their coding region were completely sequenced. In silico analyses of the translation products showed that the respective protein subunits contain the conserved domains N, M and C, typical of hemocyanins, and that in HEX 110, but not in the other subunits, the C domain is interrupted by a repetitive amino acid sequence. Analyses of similarity suggested that in the honey bee, the four hexamerin genes derived by duplication events and diversification from an ancestral gene, resulting in multiple paralogs. Our analyses also showed that HEX 110 is rich in glutamine/glutamic acid and that HEX 70a and HEX 70c are composed by more than 15% of aromatic amino acids and, therefore, integrate the arylphorin class of hexamerins. The temporal expression of these genes, and also of the gene encoding a previously characterized hexamerin of A. mellifera, hex 70b, was analyzed qualitatively and quantitatively during the development of worker bees, queens and drones. Concomitantly, the abundance of the respective polypeptides in the fat body or hemolymph was examined by SDS-PAGE or Western Blot. The four hexamerin genes are expressed in the fat body mainly during larval stage. The modulation of the expression of these genes shows similarities during the larval-pupal transition of worker bees, queens and drones, with high levels of transcripts in the last larval instar and low levels in newly ecdysed pupae. However, the relative quantity of transcripts of hex 70a, hex 70b and hex 110 in the feeding phase of the last larval instar (L5F) is significantly lower in queens than in worker bees, suggesting the participation of the respective proteins in the process of caste differentiation. During the larval stage, the four different hexamerin subunits are stored in the hemolymph where, seemingly, they perform the function of storage proteins and hence, constitute source of amino acids for pupal development. Nevertheless, the expression of hex 70a is extended until the adult stage of worker bees, queens and drones and, in this stage, the female bees and the drones show distinct expression profiles. In the fat body of worker bees, but not in queens and drones, the expression of hex 110 also occurs during the adult stage. The expression of hex 70a and hex 110 in the adult fat body was proven to be limited by the availability of nutrients: worker bees fed with a protein diet showed significantly higher levels of both transcripts than the ones that received a diet which was poor in protein, thus evidencing that the transcription and translation processes are nutritionally-regulated. Additionally, the transcripts level of hex 70a and of hex 110 increase in the fat body of worker bees with active ovaries, suggesting that these genes have function associated with reproduction. In A. mellifera, the fat body is not the only site of expression of hexamerins genes. Transcripts of hex 70a, hex 70b and hex 110 were detected also in developing gonads of worker bees, queens and drones, suggesting that they have a function in ovary differentiation and testis maturation. Our results indicated that the hexamerins encoded by these genes have alternate functions in the life cycle of A. mellifera honey bees, besides serving as a source of amino acids to metamorphosis. (AU)

FAPESP's process: 05/03302-1 - Apis mellifera hexamerin HEX 70c: cDNA characterization and expression during metamorphosis and reproduction
Grantee:Juliana Ramos Martins
Support Opportunities: Scholarships in Brazil - Master