Advanced search
Start date
Betweenand


Decomposição de resíduos culturais e emissão de gases do efeito estufa em sistemas de manejo do solo em Ponta Grossa (PR)

Full text
Author(s):
Mariana Addison Pavei
Total Authors: 1
Document type: Master's Dissertation
Press: Piracicaba.
Institution: Universidade de São Paulo (USP). Escola Superior de Agricultura Luiz de Queiroz (ESALA/BC)
Defense date:
Examining board members:
Marisa de Cassia Piccolo; Plinio Barbosa de Camargo; João Carlos de Moraes Sá
Advisor: Marisa de Cassia Piccolo
Abstract

Between the terrestrial ecosystems, the soil is one of the most important pools of carbon (C). Agricultural tillage practices alter the contents of this element, accelerating the process of organic matter oxidation, inducing greenhouse gases emissions. The present research was carried out in a long-term experiment located at Fundação ABC in Ponta Grossa (Paraná State, Brazil) under different soil management systems: conventional (CT), minimum (MT), no-till (NT) and no-till harrowed (NTH), randomly displayed in blocks. The objectives were to determine: a) soil C and nitrogen (N) stocks; b) quantity and quality crop residues; c) quantify the CO2 and N2O gasses fluxes from the soil to the atmosphere. Sampling activities were performed between October 2003 and November 2004 in the succession white oat/soybean/wheat. Soil C and N stocks were determined after the crops were harvested and showed the same distribution of soil C and N for all treatments, no significant statistically difference among cultural seasons and treatments was observed. NT system presented the highest mean soil C and N stock values, and the CT had the smaller values. Soil C sequestration rates in the 0-20 cm, in the treatments in comparison with the CT with 15 years of adoption, were 0,55; 0,66 and 0,46 Mg ha-1year-1 for MT, NT and NTH, respectively. Dry matter and C and N stocks of crop residues were higher in the harvest season, and presented high values for NT and NTH. Carbon contents in crop residues were maintained in the same magnitude and showed no significant statistically difference. Soybean residues just presented, in all treatments, higher N concentration and smaller hemicelulose contents. The holocelulose/lignocelulose quotient (HLQ), ligno-celulosico (LCI) and decomposition (DI) indexes were small, evidencing in this work, little variation between the crop residues analised. The soil CO2 CO2 daily average emissions varied from 24 to 248 mg m-2 h-1 and presented a progressive increase of November/03 (sow of the soy) to February/04, indicating that the soil respiration passed to be constituted of the organism soil and root plants. Correlation was not observed between the emissions of CO2 and N2O with the daily cycle of the temperature. The same annual averages of emission of CO2 and N2O were observed in the schedules 8:00, 12:00 and 17:00 hours. The N2O flow varied from 3 to 53 g m-2, and the largest frequency observed with water filled pore space around 60 %, and after the nitrogen fertilization in June 2004 in CT and MT and in July 2004 in NT and NTH. Soil tillage with plow and incorporation of the cultural residues in CT and MT, didn't alter the emissions of CO2 and N2O significantly. The studied treatments didn\'t present difference in the annual averages of emission of CO2 and N2O of the soil during 2003 and 2004 years. Between the studied variables, comparing the treatments CT, MT, NT and NTH, NT system stranded out from the other treatments by present higher soil C and N stocks. (AU)

FAPESP's process: 03/04582-2 - Decomposition of crop residues and emission of greenhouse effect gases in soil management systems in Ponta Grossa, Paraná
Grantee:Mariana Addison Pavei
Support Opportunities: Scholarships in Brazil - Master