Advanced search
Start date
Betweenand


Molecular adsorption on transition metals (iron, cobalt and nickel) monitored by the surface-enhanced Raman scattering technique: several metallic substrates

Full text
Author(s):
Gustavo Fernandes Souza Andrade
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Conjunto das Químicas (IQ e FCF) (CQ/DBDCQ)
Defense date:
Examining board members:
Márcia Laudelina Arruda Temperini; Koiti Araki; Alexandre Guimarães Brolo; Liane Márcia Rossi; Germano Tremiliosi Filho
Advisor: Márcia Laudelina Arruda Temperini
Abstract

Surface-enhanced Raman spectra of organic adsorbates on Fe, Co and Ni electrodes were acquired after the development of specific methodologies described in this PhD thesis. Electrochemical activation procedures were developed for the three bare metaIs electrodes. The electrochemical activation protocols were applied for the acquisition of SERS spectra of pyridine, 1,10-phenanthroline and 2- and 4-aminopyridine on Fe, Co e Ni electrodes. The total and relative intensities changes of SERS bands with the applied potentials were explained by the charge transfer mechanism, which had a large contribution in the SERS enhancement for these metaIs. The enhancement factor determined for the three metaIs, on the 102-103 times range, strongly depends on the adsorbate\' s vibrational modes. The SERS spectra of pyridine on the transition metals and vibrational spectra calculations of pyridine with metallic atoms showed that the formation of α-pyridil in the adsorption on transition metaIs, suggested in the literature, didn\'t occur. The calculated pyridine SERS excitation profiles present reasonable correlaton with the experimental data. The SERS results for 1,10-phenanthroline showed that the free molecule was the adsorbing species. The potential dependence of the SERS relative intensities was different from those of the resonance Raman spectra of 1,10-phenanthroline complexes with transition metal ions, indicating that different excited states were probed by the two techniques. 2-aminopyridine adsorbed through the pyridinic ring at less negative potentials and through both pyridinic and aminic nitrogens at more negative potentials on Co and Ni electrodes, but for Fe electrode it adsorbed exclusively through the pyridinic nitrogen. 4-aminopyridine adsorbed perpendicularly to the electrode. In 0,1 mol.L-1 KCl electrolytic solution, 4-aminopyridine changed from weak1y bound to a surface complex similar to the synthesized complex at more negative potentials. In 0,1 mol.L-1 KI electrolytic solution, both species were observed in a larger potential interval. On the Ni electrode, protonated 4aminopyridine was observed for V = -0.7 V, and for more negative potentials a surface complex, similar to the synthesized one, was observed. The electrodeposition of ultrathin film of Co and Ni on electrochemically-activated Ag electrodes allowed obtaining SERS spectra of pyridine with high enhancement factors. The SERS spectra of py for films thickness higher than 2 monolayers of Co or Ni presented intense bands of pyridine adsorbed on these metals, and no bands of pyridine adsorbed on Ag were observed, indicanting the absence of pinholes in the films. The relative intensities of SERS spectra on the thin films were similar to those obtained for the SERS of pyridine on the bare metaIs electrodes for films thicker than 7 monolayers, but with SERS intensity 100 times higher. The SERS activity and signal strength reproducibility of Au nanostructured substrates obtained by electrodeposition on a polystyrene masking were evaluated. The SERS spectra of 4-mercaptopyridine adsorbed on optimized electrodes presented intensities 2 times greater than those of the electrochemically activated Au electrode. The SERS intensity reproducibility for these substrates was ± 15%, indicating the potential use of such substrates as sensors. (AU)