Advanced search
Start date
Betweenand


Characterization of the role of protein kinases C (PKC) in proliferation and self-renewal of murine embryonic stem cells

Full text
Author(s):
Nicole Milaré Garavello
Total Authors: 1
Document type: Master's Dissertation
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Conjunto das Químicas (IQ e FCF) (CQ/DBDCQ)
Defense date:
Examining board members:
Deborah Schechtman; Leticia Labriola; Verônica Maria Morandi da Silva
Advisor: Deborah Schechtman
Abstract

Embryonic stem cells (ESC) are able of proliferating indefinitely maintaining their pluripotency, which is the capability to differentiate in different cell types upon appropriate stimuli. Pluripotency has been intensely investigated in order to allow the use of these cells in cellular replacement therapies. Previous work has demonstrated that the serine/ threonine kinases, such as, Protein kinases C (PKC) are important modulators of signaling cascades that lead to the process of proliferation and self-renewal of ESC. However, the exact role of the different PKC isoenzymes still remains to be elucidated. Due to the fact that the PKC family is composed of at least ten different isoenzymes and only recently isoenzyme specific modulators have been developed, which now allows the elucidation of these kinases roles. In the present work we verified that activation of PKC&#948 induced undifferentiated ESC have their proliferation rate increased. Trying to elucidate the signaling pathways mediated by PKC&#948 that lead to the proliferation increase we performed phosphoproteomic studies to identify potential PKC&#948 targets. Between the targets identified we found several proteins related with proliferation, protein transcription, translation and stress response (chaperones). These targets contributed to the hypothesis that PKC&#948 activation leads to undifferentiated ESC proliferation. In different cell lines, PKC&#948 activation leads to MAPK activation, through ERK1/ 2 activation, which are frequently involved with cellular proliferation. We also identified several targets of PKC&#948 that Interact with several components of MAPK`s signaling cascade. PKC&#948 activation in murine undifferentiated ESC line, E14TG2a, led to MEK, ERK1/ 2 and the transcription factor Elk-1 activation. Some articles demonstrate that the inhibition of ERK1/2 are responsible to maintains ESC undifferentiated and that it`s activation could lead to ESC differentiation. Analysing the kinetics of ERK activation in the ESC by PKC&#948, we show that ERK activation was transient and despite the fact that PKC&#948 does not translocated to the nucleus upon activation, but induces ERK activation and it`s nuclear translocation, where ERK could phosphorylate the transcription factor Elk-1. In conclusion PKC&#948 induces undifferentiated murine ESC proliferation increase by a transient ERK activation and it`s nuclear translocation. (AU)

FAPESP's process: 09/04067-7 - Caracterization of the role of PKCs in proliferation and self-renewal in murine embryonic stem cells
Grantee:Nicole Milaré Garavello
Support Opportunities: Scholarships in Brazil - Master