Advanced search
Start date
Betweenand


Role of XPD and DNA polymerase eta in the response of human cells to DNA damage

Full text
Author(s):
Leticia Koch Lerner
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Faculdade de Medicina (FM/SBD)
Defense date:
Examining board members:
Carlos Frederico Martins Menck; Roger Chammas; Tirzah Braz Petta Lajus; Jenifer Saffi; Bryan Eric Strauss
Advisor: Carlos Frederico Martins Menck
Abstract

The Nucleotide Excision Repair (NER) pathway is responsible for the repair of UV photoproducts and other bulky lesions that block both replication and transcription. Patients with the rare recessive disorders Xeroderma Pigmentosum (XP), trichothiodystrophy (TTD) and Cockayne Syndrome (CS) carry mutations in one of the 11 NER genes, linked to repair and basal transcription. Mutations in XPD lead to different phenotypes: XP, TTD, XP/CS or COFS (Cerebro-Oculo-Facio-Skeletal Syndrome), a rare form of CS. XP patients have high incidence of skin cancer, which does not occur in TTD or CS patients, although ther may present neurodegeneration, while all CS and TTD patients have neurodevelopmental symptoms linked to dysmielynation. The pathology of these neurological diseases is probably associated with deficient repair of DNA lesions in nervous cells, generated by endogenous processes. Many groups including ours have demonstrated the involvement of NER in the repair of these lesions, previously thought to be exclusively repaired by Base Excision Repair. In this work we show high sensitivity of both primary and transformed XP-D, XP-D/CS and TTD human fibroblasts in response to oxidative stress generated by photoactivated methylene blue, with prolonged cell cycle arrest and DNA damage signaling. The complementation of the three different cell lines with the XPD/ERCC2 gene was able to restore cell survival. We detected important differences in repair capacity/transcription resumption after damage generated by oxidative stress in plasmid DNA, besides the activation of different cell death pathways: XP-D cells have higher repair capacity and die by apoptosis, while XP-D/CS and TTD cells have little repair capacity and activate more than one death pathway (apoptosis and necrosis). We believe these differences can be related to the patients\' phenotypes. Mutations in DNA polymerase n coding gene, POLH, are associated with the variant form of XP (XP-V). Pol n is a translesion synthesis (TLS) polymerase specialized in the TLS past CPD photoproducts, besides other lesions like oxidized bases, and in other processes like somatic hypermutation and DNA replication in structured regions. In this work we show XP-V human fibroblasts are sensitive to oxidative stress. We detected an induction of pol n after genotoxic stress in primary cells, associated with increased ability to deal with the stalled replication fork, and consequently to DNA replication restart and cell survival. In addition, we detected a difference in genomic stability in immunoglobulin genes in aged XP-V patients in comparison to both young patients and age-matched controls, showing the absence of this polymerase may be linked to increased genomic instability in these genes (AU)