Advanced search
Start date
Betweenand


Role of dipeptidyl peptidase IV in the pathophysiology of heart failure

Full text
Author(s):
Thiago de Almeida Salles
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Faculdade de Medicina (FM/SBD)
Defense date:
Examining board members:
Adriana Castello Costa Girardi; Fernando Rodrigues de Moraes Abdulkader; Francisco Rafael Martins Laurindo
Advisor: Adriana Castello Costa Girardi
Abstract

Aim: The present study aimed to test the hypothesis that the activity and/or expression of dipeptidyl peptidase IV (DPPIV), an enzyme that inactivates cardiorenal protective peptides including glucagon-like peptide-1 (GLP-1) and brain natriuretic peptide (BNP), would be associated with poorer outcomes in heart failure (HF). Methods: Experimental HF was induced in male Wistar rats (200-250 g) by left ventricular (LV) myocardial injury after radiofrequency catheter ablation. Rats were divided in three groups: Sham, HF and HF+DPPIV inhibitor (sitagliptin 200mg/kg/b.i.d). Six weeks after surgery, animals were individually housed in metabolic cages during 3 days for assessment of renal function. Plasma and heart DPPIV activity/expression were measured spectrophotometrically and by immunoblotting respectively. For evaluation of cardiac function a pressure-volume catheter was positioned into the LV cavity. Histological analysis was performed for morphometric parameters. Plasma DPPIV activity was also measured in patients (n = 190) with heart failure. Results: Plasma DPPIV activity and abundance were increased in animals with HF compared to Sham. Additionally, plasma DPPIV activity positively correlated with ventricular end diastolic volume (R² =0.517; p < 0.001) and lung/body weight (R² =0.492; p < 0.01). A negative correlation between plasma DPPIV activity and ejection fraction was also observed (R² =0.602; p < 0.001). Interestingly, HF animals also exhibited an increase of expression and activity of DPPIV in heart tissue, especially in endothelial cells. Six-week treatment with the DPPIV inhibitor sitagliptin attenuated cardiac dysfunction, mitigated cardiac hypertrophy, interstitial fibrosis, lung congestion and macrophage infiltration. Sitagliptin also raised the plasma levels of active GLP-1, increased activation of cardioprotective signaling pathways including PKA, and Akt; and reduced the levels of apoptosis and pro-inflammatory biomarkers compared to non-treated HF rats. Despite the higher circulating total BNP, renal PKG activity was lower in HF rats compared with sham and sitagliptin-treated rats, suggesting a decrease in active/total BNP ratio. Renal function did not differ between groups, but glomerular filtration rate was modestly, but significantly increased by Sitagliptin compared to HF. Plasma DPPIV activity in patients was also increased compared to healthy subjects and correlations was found with ejection fraction (R² =-0.20; p=0.009) and the chemokine Ccl2 (R² =0.30; p < 0.01). Conclusions: Taken together, our results demonstrate that circulating DPPIV activity correlates with poorer cardiovascular outcomes in human and experimental HF and might play an important role in the pathophysiology of HF. (AU)

FAPESP's process: 11/07402-1 - Impact of dipeptidyl peptidase IV inhibition on the cardiac and renal alterations in rats subjected to myocardial injury: evaluation of the preventive and therapeutic effects
Grantee:Thiago de Almeida Salles
Support Opportunities: Scholarships in Brazil - Doctorate (Direct)