Advanced search
Start date
Betweenand


Changes in the metabolic profile in response to ischemia/reperfusion in a swine model of acute kidney injury

Full text
Author(s):
Pamella Araujo Malagrino
Total Authors: 1
Document type: Master's Dissertation
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Faculdade de Medicina (FM/SBD)
Defense date:
Examining board members:
Alexandre da Costa Pereira; Adriana Castello Costa Girardi; Ana Carolina de Mattos Zeri
Advisor: Alexandre da Costa Pereira
Abstract

Acute kidney injury (AKI) is a serious complication in hospitalized patients mainly caused by ischemia/reperfusion. AKI is defined as the abrupt decrease in kidney function based on acute alterations in serum creatinine or urine output. Nevertheless, changes in serum creatinine are late and vary with muscular mass, age, gender, metabolism and hydration of individuals. In this sense, new biomarkers for the accurate and early diagnosis are needed. In humans LRA is a secondary disease, related to the progress of other diseases. Thus, the development of animal models with similar response to humans is extremely important. This study aimed to develop and characterize a swine model of renal ischemia/reperfusion (I/R), followed by the identification of changes in serum metabolic profiles during acute renal I/R. In addition to collaborating with a better understanding of the physiopathology of the disease, these findings may provide new biomarkers with potential use in diagnosis and prognosis through the monitoring hospitalized patients. Here we report the development of a controlled, single-insult model of unilateral renal I/R without contralateral nephrectomy, using a suitable model, the pig. Animals underwent renal ischemia by balloon catheter placed and inflated into the right renal artery for 120 minutes and reperfusion over 24 hours. Serial serum and urine were sampled. The characterization of the renal I/R model was made by histological and biochemical analyzes. Identification of new biomarkers was performed by nuclear magnetic resonance (600MHz) followed by PLS-DA analysis and systems biology. Acute tubular necrosis (ATN) was identified in every animal, but only two animals showed levels of serum creatinine above 150% of baseline values. As expected, I/R increased serum creatinine and BUN. Fractional sodium, potassium, chloride, bicarbonate and glucose excretion were modulated during ischemia. Serum nitrated proteins and NGAL presented two profiles: decreased with ischemia and increased after reperfusion. This decline was associated with increased protein excretion during ischemia and early reperfusion. From this renal I/R model developed, eight metabolites were selected: L-glutamate, L-serine, N-isovaleroylglicine, L-methionine, L-proline, 2-aminobutyrated, choline and creatinine. PLS-DA analysis for these metabolites resulted in an accurate separation between pre ischemia and ischemia groups. All selected metabolites recovered to baseline conditions after 11 hours of reperfusion. Through network analysis we found changes in H+, Na+ and Cl- ion transport pathways and association with Nuclear Factor-KappaB (NF?B), Huntingtin (HTT) and proinsulin (insulin) pathways. Thus, it was possible to develop a percutaneous model of renal I/R in swine model, allowing the development of studies to explore physiopathology responses and new renal ischemic biomarkers. With this model and metabolomic tools, it was possible to develop a metabolic panel that contributes to the study of ischemia physiopathology and may become a promising tool for the early identification of patients with AKI generated by renal I/R (AU)

FAPESP's process: 11/04344-0 - Identification of nitrated protein with disgnostic potencial and prognostic in desease ischemic kidney
Grantee:Pamella Araujo Malagrino
Support Opportunities: Scholarships in Brazil - Master