Advanced search
Start date
Betweenand


Study of HSPB1 function in the cytoprotection induced by prolactin in pancreatic beta cells

Full text
Author(s):
Vinícius de Morais Gomes
Total Authors: 1
Document type: Master's Dissertation
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Conjunto das Químicas (IQ e FCF) (CQ/DBDCQ)
Defense date:
Examining board members:
Leticia Labriola; Bettina Malnic; Fernanda Ortis; Ricardo Weinlich
Advisor: Leticia Labriola
Abstract

The islet transplantation is a promising therapy for the treatment of type 1 diabetes mellitus (T1DM). However, transplanted islets are subject to rejection by the immune system of the recipient patients, therefore the development of molecular mechanisms that protect these cells is necessary. Studies have shown that the hormone prolactin (PRL) is capable of inhibiting apoptosis triggered by pro-inflammatory cytokines on pancreatic beta cells and that this cytoprotective process depends on the presence of the chaperone HSPB1. It was observed that during the development of type 1 diabetes, pancreatic beta cells undergo endoplasmic reticulum stress and that this contributes to trigger apoptosis. The endoplasmic reticulum stress is characterized by accumulation of misfolded proteins in this organelle resulting in the activation of unfolded protein response (UPR) that aims to restore cellular homeostasis. In the present study, we show for the first time that PRL was able to protect pancreatic beta cells against endoplasmic reticulum stress promoted by both pro-inflammatory cytokines (TNFα, IFNγ and IL1β) as the endoplasmic reticulum stressors: tunicamycin and thapsigargin; and HSPB1 is essential that cytoprotective mechanism. In the context of T1DM, PRL appears to have a modulating effect of the UPR by increasing the levels of BiP, anticipating the activation of ATF6 and PERK, keeping the PERK pathway active for longer, inhibiting the pathway IRE1α, and decreasing the levels of CHOP for longer times. Collectively, the results presented here deepen the knowledge of the HSPB1 function, leading to the development of strategies inducing attenuation of beta cells death through modulation of endogenous protection means, which are independent of the modulation of the immune system. (AU)

FAPESP's process: 14/17974-0 - Unveiling the role of HSPB1 in prolactin-induced cytoprotection in pancreatic beta cells
Grantee:Vinícius de Morais Gomes
Support type: Scholarships in Brazil - Master