Advanced search
Start date
Betweenand


Modification of proteins by oxidation products of cholesterol: mechanisms and biological implications

Full text
Author(s):
Thiago Cardoso Genaro de Mattos
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Conjunto das Químicas (IQ e FCF) (CQ/DBDCQ)
Defense date:
Examining board members:
Sayuri Miyamoto; Ohara Augusto; Francisco Rafael Martins Laurindo; Daniel Carvalho Pimenta
Advisor: Sayuri Miyamoto
Abstract

Cholesterol is an important component of eukaryotic cellular membranes, where it has an influence in the fluidity and stability. Due to the presence of a double bond in its structure, cholesterol can be oxidized by reactive oxygen and nitrogen species. This non-enzymatic oxidation generates, as primary products, cholesterol hydroperoxides. Such molecules, in turn, are highly reactive and can react with free metal ions and/or metalloproteins, affecting cell metabolism. Therefore, the first chapter of the present study aims to investigate the reaction of cholesterol hydroperoxides (ChOOH) with cytochrome c (cytc), a heme protein involved in the mitochondrial electron transport. Spectroscopic analyses in the UV-Vis region showed that ChOOH induces a dose-dependent bleaching of cytc\'s Soret band. In addition, this reaction leads to the formation of carbon-centered radicals on both protein and lipid, suggesting a homolytic reduction of ChOOH. As consequences, cytc undergoes oligomerization, a process that can influence electron transport and apoptosis signaling. The reaction of cytc and ChOOH can produce, directly or indirectly, reactive species such as epoxides, aldehydes and ketones. Among them, cholesterol aldehydes, such as cholesterol secoaldehyde (CSec) and cholesterol carboxyaldehyde (ChAld), are of particular interest, since they were previously found elevated in atherosclerotic plaques and brain tissue of patients bearing neurodegenerative diseases. These species can also react with amino acid residues leading to protein denaturation and malfunction. With that in mind, the second chapter of this study aims to investigate the reaction of ChAld and cytc. Using mimetic membrane models and mass spectrometry analyses, we showed that ChAld covalently modifies cytc through a mechanism consistent with the formation of Schiff base adducts. Such modification occurs mostly at lysine residues that are known to interact with the membrane. The modifications have an influence in the affinity of cytc to the membrane, where they increase its binding to the membrane, a process that could affect the electron transport and apoptosis signaling. In the last and third chapter of this study we wanted an analytical tool that allowed the investigation of protein adduction promoted by cholesterol and other sterols-derived oxidation products. In a study performed in collaboration with the Porter group from Vanderbilt University, we used analyses based on click chemistry to search for protein adduction. To address that, we first synthesized derivatives of cholesterol and 7-dehydrocholesterol (7-DHC, the immediate precursor of cholesterol) containing an alkynyl group in the side chain. The alkynyl group can be ligated to an azide group through a cycloaddition reaction, in a process known as click chemistry. After the synthesis and characterization of alkynyl derivatives, Neuro2a cells were treated with alkynyl-7-DHC and alkynyl-cholesterol to check their metabolism. HPLC-MS/MS analyses showed that both alkynyl derivatives are metabolized and converted into their respective esters. In addition, using a cell model for Smith-Lemli-Optiz Syndrome (SLOS), a disease characterized by the deficiency in the dehydrocholesterol reductase 7, we showed that the characteristic accumulation of 7-DHC in SLOS patients might be associated with protein adduction promoted by its oxidation products, which might contribute to the development of the disease. (AU)