Advanced search
Start date
Betweenand


Cellular prion protein biology

Full text
Author(s):
Kil Sun Lee
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Conjunto das Químicas (IQ e FCF) (CQ/DBDCQ)
Defense date:
Examining board members:
Vilma Regina Martins; Maria Julia Manso Alves; Enilza Maria Espreafico; Sergio Teixeira Ferreira
Advisor: Vilma Regina Martins
Abstract

The cellular prion protein (PrPc) is a glycoprotein anchored to the plasma membrane by GPI (Glycosyl-phosphatidylinositol). Its abnormal isoform (PrPsc) is the infectious protein responsible for several neurodegenerative diseases. The main etiology of the prion diseases is related to conformational changes in the PrPc molecule, which occur after its internalization (Prusiner, 1998). In order to elucidate the physiological functions of PrPc, our group identified and characterized interactions between PrPc and other cellular molecules. The first is the interaction between PrPc and STI 1 (Stress Inducible Protein 1). This interaction has an important role in the neuroprotection against apoptosis through cAMP and PKA signaling (Chiarini et al., 2002; Zanata et al., 2002). PrPc also interacts with proteins of the extracellular matrix such as laminin and vitronetin. These interactions contribute for neurite outgrowth, maintenance and regeneration (Graner et al., 2000 a and b; Hajj et al., submitted) and also in memory formation (Coitinho et al., submitted). In the first part of this work we have applied the differential dysplay RTPCR technique in order to identify genes that are regulated by PrPc - STI 1 interaction and also by the deletion of PrPc. In the second part we have demonstrated that PrPc-laminin interaction induces transient calcium signaling in neuronal cells, which occurs even in the absence of extracellular calcium. PrPc cycles continuously between the plasma membrane and intracellular compartments. This mechanism is associated with some of the physiological function of PrPc, such as Cu2+ homeostasis (Brown, 2001 ), interaction with laminin receptor (Gauczynski et al., 2001 ), and PrPc conversion into PrPsc (McKinley et al., 1991; Arnold et al., 1995). Thus, in the third part of this project, we have characterized the PrPc localization at the cell surface and in intracellular compartments. The protein trafficking through Golgi apparatus, plasma membrane, early and recycling endosomes was also defined. Moreover, we have determinated that N-terminus PrPc domain is responsible for its internalization while C-terminus participates in PrPc delivery. Therefore, this work has contributed to elucidate biological events related to the cell signaling and trafficking of PrPc, which are important for the characterization of PrPc physiological functions and to understand the pathological mechanisms related to this molecule. (AU)