Advanced search
Start date
Betweenand


Photochemical properties of the photosensitizers crystal violet and methylene blue in microheterogeneous systems and cancerous cells in culture

Full text
Author(s):
Carla Santos de Oliveira
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Conjunto das Químicas (IQ e FCF) (CQ/DBDCQ)
Defense date:
Examining board members:
Mauricio da Silva Baptista; Iouri Borissevitch; Iolanda Midea Cuccovia; Paolo Di Mascio; Yassuko Iamamoto
Advisor: Mauricio da Silva Baptista
Abstract

The photophysical and photochemical properties of crystal violet (CV) were investigated in isotropic solutions and it was found that solvents with small dielectric constants favor the formation of the ion pair and that the increase in viscosity of the medium restricts the rotational movement of the aromatic rings, resulting in an increase in fluorescent lifetime and therefore in the fluorescence quantum yield (Φf) (Oliveira 2002). CV experiments were conducted in reverse micelles of the anionic tensoactive sodium bis-2-ethylhexyl-sulfosuccinate (AOT) in isooctane. The interfacial localization of CV in the AOT reverse micelles at low and high values of molar ratio between water and surfactant (W0 was found through the proton and carbon 13 Nuclear Magnetic Resonance techniques (NMR). Using UV-Vis spectroscopy, it was identified that contact ion pairs are present in low W0 values and with the increase in the W0 solvent separated ion pairs are the species that predominate in solution. The comparison of the photobleaching efficiency of CV in AOT reverse micelles as a function of W0indicated that the photoreactivity is high with low W0 values. This effect must be related to the restrict environment in which CV is located. The reactive intermediate formation was found through the Laser Flash Photolysis and Near Infra-Red Emission, indicating the presence of triplet, radical and singlet oxygen species with a yield quantum of less than 1%. The photolysis products were identified through the chromatographic and spectroscopic techniques. In the oxygen presence, there was high Michler ketone formation. With the low oxygen concentration, the observable product was leuco-CV. With these studies we hypothesized a mechanism of CV in these proposed media. After the reverse micelles studies, the HeLa cancerous cells were used, in order to compare the CV and methylene blue (MB) photoactivity. The CV and MB proportion inside the cell was high, reaching 70% and 80% of concentration of the incubation solution, respectively. With the increase of MB concentration, a favoring of dimmer formation was identified. CV does not suffer aggregation in the studied conditions. None of the studied photosensitizers has a damaging effect upon the HeLa cells in concentrations below 10µM. After irradiation, MB caused a decrease about twice higher in the cellular survival rate compared to CV. The singlet oxygen formation after the photosensitizer incorporation was investigated. There is a singlet oxygen formation in the cells incubated with MB, though with the CV the singlet oxygen generation is significantly low suggesting the radicalar mechanism. The cellular death process was studied by Fluorescence Activated Cell Sorting and MB-induced apoptosis was found after MB irradiation in HeLa cells. The light absorption by both photosensitizers is similar, which means that the survival decrease is not because of the light absorption difference. The survival differences observed with the cells incubated with CV and MB and irradiated were related to the differences in the photosensitizer photochemical properties. The cellular location of the CV and MB in cells were characterized by fluorescence microscopy. Both photosensitizers are located in mitochondrias. An increase in the CV concentration does not alter its local profile. However, with an increase in the MB concentration, MB was located not only in mitochondrias but also in lysosomes. The comparison of the photochemical and localization properties was considered in order to explain the differences in the photodynamic activity of CV and MB in HeLa cells (AU)