Advanced search
Start date
Betweenand


Study of the nanoparticle dispersion in water and its effect on the properties of gelatin films nanocomposites

Full text
Author(s):
Christian Humberto Caicedo Flaker
Total Authors: 1
Document type: Master's Dissertation
Press: Pirassununga.
Institution: Universidade de São Paulo (USP). Faculdade de Zootecnica e Engenharia de Alimentos (FZE/BT)
Defense date:
Examining board members:
Paulo José do Amaral Sobral; Eliria Maria de Jesus Agnolon Pallone; Alberto Manuel Sereno
Advisor: Paulo José do Amaral Sobral
Abstract

One of the possible alternatives to replace synthetic materials in the area of food packaging is the development of films based on biopolymers. Several studies have demonstrated the improvement in properties of films based on biopolymers due to the use of nanoparticles as reinforcement. However, the observed improvements are still limited and it can be considered that this is due to dispersion problems of nanoparticles in water, particularly when using the casting technique. The aim of this project was to study the quality of the dispersion of nanoparticles (montmorillonite) in water, and to analyze the effect of these dispersions on some physical and functional properties of gelatin films. The nanoparticles were dispersed in water (1 g MMT/100 g solution), with three devices: mechanical homogenizer (UT), colloidal mill (MC) and ultrasonic processor (US). The dispersions were analyzed for determination of particle size and zeta potential, and by scanning electron and atomic force microscopies. Films were produced by casting, with 5 g of gelatin/100 g of film-forming solution and 30 g of glycerol/100 g of gelatin. The nanoparticles concentrations were 0, 1, 3, 5 and 7 g of MMT/100g of gelatin. The control and nanocomposite films were characterized for determination of thickness, moisture, water solubility, water vapor permeability, tensile and puncture mechanical properties, color and opacity, brightness, microstructure by scanning electron microscopy and atomic force microscopy, glass transition temperature by differential scanning calorimetry, X-ray diffraction, infrared spectroscopy with Fourier transform and contact angle. The zeta potential and average particle size was -53, -40, -47 mV and 377, 289, 395 nm; for UT, US and MC dispersions, respectively. In general, the films filled with montmorillonite were 44% less glossy and were slightly more hydrophilic than control film. The maximum tensile strength increased from 22 MPa for control film to 40 MPa when the concentration of montmorillonite was up to 5 g of MMT/100g of gelatin. The water vapor permeability did not change in the nanocomposite films. The dispersion method used had a strong influence on the quality of dispersions; it can affect the particle size and zeta potential, with evident effect on the physical properties of nanocomposites. The critical concentration of montmorillonite as reinforcement seemed to be limited to 5 g of MMT/100 g of gelatin maximum tensile strength increased from 22 MPa for control film to 40 MPa when the concentration of montmorillonite was up to 5 g of MMT/100g of gelatin. The water vapor permeability did not change in the nanocomposite films. The dispersion method used had a strong influence on the quality of dispersions; it can affect the particle size and zeta potential, with evident effect on the physical properties of nanocomposites. The critical concentration of montmorillonite as reinforcement seemed to be limited to 5 g of MMT/100 g of gelatin. (AU)

FAPESP's process: 11/15784-1 - Study of the dispersion of nanoparticles in water and its effect on properties of gelatin-based nanocomposits
Grantee:Christian Humberto Caicedo Flaker
Support Opportunities: Scholarships in Brazil - Master