Advanced search
Start date
Betweenand


The transcriptome of oxygen-induced retinopathy and an angiogenesis-based prognostic gene signature for prediction of breast cancer relapse

Full text
Author(s):
Rodrigo Guarischi Mattos Amaral de Sousa
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Instituto de Matemática e Estatística (IME/SBI)
Defense date:
Examining board members:
João Carlos Setubal; Paul Christopher Boutros; Anamaria Aranha Camargo; Pedro Alexandre Favoretto Galante; Eduardo Moraes Rego Reis
Advisor: João Carlos Setubal; Ricardo José Giordano
Abstract

Angiogenesis is the process of formation of new blood vessels based on existing vessels. It is a vital process but many diseases also rely on this mechanism to get nourishment and progress. These so called angiogenesis-dependent diseases include cancers, retinopathies and macular degeneration. Some angiogenesis inhibitors were developed in the past decade, aiming to help the management of such diseases and improve patients quality of life. Most of these compounds work by inhibiting VEGFA/VEGFR2 binding, which is also a key element to the survival of quiescent endothelial cells; this may partly explain unanticipated adverse events observed in some clinical trials. We hypothesize that the improvement of anti-angiogenesis therapies hinges on a better and broader understanding of the process, especially when related to diseases\' progression. Using RNA-seq and a well accepted animal model of angiogenesis, the murine model of Oxygen Induced Retinopathy, we have explored the transcriptome landscape and identified 153 genes differentially expressed in angiogenesis. An extensive validation of several genes carried out by qRT-PCR and in-situ hybridization confirmed Esm1 overexpression in endothelial cells of tissues with active angiogenesis, providing confidence on the results obtained. Enrichment analysis of this gene list endorsed a narrow link of angiogenesis and frequently mutated genes in tumours, consistent with the known connection between cancer and angiogenesis, and provided suggestions of already approved drugs that may be repurposed to control angiogenesis under pathological circumstances. Finally, based on this comprehensive landscape of angiogenesis, we were able to create a prognostic molecular biomarker for prediction of breast cancer relapse, with promising clinical applications. In summary, this work successfully unveiled angiogenesis-related genes, providing novel therapeutic alternatives, including potential drugs for repositioning. The set of differentially expressed genes is also a valuable resource for further investigations. (AU)

FAPESP's process: 12/15197-1 - Systems biology of blood vessel formation: a transcriptome study
Grantee:Rodrigo Guarischi Mattos Amaral de Sousa
Support Opportunities: Scholarships in Brazil - Doctorate