Advanced search
Start date
Betweenand


Production of high-concentration monoacylglycerol through lipase-catalyzed glycerolysis and molecular distillation

Full text
Author(s):
Patricia Bogalhos Lucente Fregolente
Total Authors: 1
Document type: Doctoral Thesis
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Faculdade de Engenharia Química
Defense date:
Examining board members:
Maria Regina Wolf Maciel; Patricia de Oliveira Carvalho; Roseli Aparecida Ferrari; Renato Grimaldi; César Benedito Batistella
Advisor: Maria Regina Wolf Maciel; Glaucia Maria Ferreira Pinto
Abstract

Monoacylglycerol (MAG) and diacylglycerol (DAG) were produced through lipasecatalyzed glycerolysis reaction employing commercial lipases. The first product MAG is widely used as emulsifiers in foods, cosmetics and pharmaceutical products. DAG, the same way of MAG, is usually used as emulsifiers. Nowadays, DAG replacing triacylglycerol (TAG) oil in food has been studied. MAG and DAG production can be carried out through chemical or enzymatic syntheses. The enzymatic route, more friendly environmentally, can be done by solvent-free system or employing organic solvents. To obtain more quality products, produced by green technologies and minimizing the production of toxic waste, this research focused preferably on the solvent-free lipasecatalyzed process. Besides the concern of using enzymatic technology to develop processes friendly to the environment, the MAG and DAG production is an alternative for glycerol from biodiesel production. The proposal to incorporate both processes of esters (biodiesel) with the glycerolysis to MAG and DAG production is an alternative that enables the biodiesel production, employing the glycerol surplus adding value to it avoiding the discard. During the enzymatic syntheses of the emulsifiers MAG and DAG, it was observed that additional processes of separation and preparation of immobilized lipases for new cycles of enzymatic reaction could be avoided. The immobilized lipase could be used at least for nine times without essential loss of TAG conversion. As the same way, the free lipase could be reused at least for 8 times, showing that, for this particular case, the reuse of non-immobilized lipase was possible. After the enzymatic reactions, MAG and DAG were separated through molecular distillation process without thermal degradation of products in distillation temperatures of 250 oC at most. Two equipments were used for the molecular distillations: an imported centrifugal molecular distiller, laboratory scale, and a centrifugal molecular distiller, pilot scale, a national technology developed by this research group at the Laboratory of Separation Process Development (LDPS). MAG of 80% of purity was obtained and also na oil rich in DAG (53 wt%). The distilled products were characterized according to their characteristics of molar weight, density and degradation temperature (AU)