Advanced search
Start date
Betweenand


Geology and genesis of iron oxide-copper-gold deposits in the Carajas Mineral Province: the case study of the Sossego deposit

Full text
Author(s):
Emerson de Resende Carvalho
Total Authors: 1
Document type: Doctoral Thesis
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Instituto de Geociências
Defense date:
Examining board members:
Roberto Perez Xavier; Wanilson Luiz Silva; Caetano Juliani; Jose Carlos Frantz; Gianna Maria Garda
Advisor: Lena Virginia Soares Monteiro; Roberto Perez Xavier; Carlos Roberto de Souza Filho
Abstract

The Sossego iron oxide-copper-gold deposit in the Carajás Mineral Province (CMP), northern Brazil, consists of three main orebodies, named Sossego-Curral, Sequeirinho-Baiano and Pista, enveloped by sodic, sodic-calcic, potassic, chloritic, and hydrolithic hydrothermal alteration zones. These alteration zones display different degrees of development in these orebodies. The early alteration stages were controlled by fluid-flow in large-scale regional shear zones, whereas bulk copper-gold mineralization was late and formed in a brittle structural environment. Hypersaline NaCl-CaCl2-H2O hot (>500 oC) brines could be associated with the initial development of the hydrothermal system. Sequeirinho and Sossego sulfide ore breccias are marked by enrichment in Cu-Fe-Au-(Ag)-Ni-Co-Se-Y-V-P-La-Ce and low contents of Ti, which also occur in other IOCG deposits of CMP and worldwide IOCG deposits. The high contents of Ni, Co, Se, V and Pd, particularly in Sequeirinho orebody, possibly were originated by metal leaching from sources such as intrusive gabbro, which have spatial relationship with massive magnetite bodies and mineralized zones, and metaultramafic lenses of Itacaiúnas Supergroup. Fluid-rock interaction process might have resulted in significant metal leaching from host sequences, enhanced by early high temperature (>500 oC) and high chloride concentrations of hydrothermal fluids in the extensive Sossego hydrothermal system driven by heat from several intrusive episodes recorded in the CMP. Fluid inclusions of the samples from the final stages of evolution of the Sossego hydrothermal system in brittle conditions, indicated participation of hot hypersaline brines, low temperature (~150 oC) CaCl2-rich saline brines and low-temperature (<250 oC) low salinity NaCl-H2O fluids in early, main and late mineralization stages. The CaCl2-rich saline brines could reflect continuum evolution from magmatic hypersaline fluids or involve low temperature basinal, including evaporite-derived fluids. Low salinity, NaCl-bearing fluids, predominates in late stages and reflect channelized influx of meteoric fluids. The transition to a dominantly brittle structural regime and cooling of the system favors the influx of these oxidized meteoric-derived fluids. Fluid mixing could have represented a major influence on ore precipitation in different orebodies from the Sossego IOCG deposit and could have had fundamental importance to trigger the bulk of copper deposition. (AU)