Advanced search
Start date
Betweenand


Understanding the cell signalization pathways that impact on glutaminase activity

Full text
Author(s):
Carolline Fernanda Rodrigues Ascenção
Total Authors: 1
Document type: Master's Dissertation
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Instituto de Biologia
Defense date:
Examining board members:
Sandra Martha Gomes Dias; Adriana Franco Paes Leme; José Andrés Yunes
Advisor: Marília Meira Dias; Sandra Martha Gomes Dias
Abstract

Cell proliferation is crucial for embryogenesis and organism growth, being also essential for the proper function of several adult tissues. Although important for the homeostasis of the organism, its deregulation composes the driving force of tumor development. In the past twenty years the relationship between the processes of signal translation stimulated by growth factors and the reorganization of metabolic activity has become more evident. Growing cells need to prioritize the biosynthesis and biomass increase, processes essential for cell division. In tumor cells, the glutamine consumption is increased concurrently with the increasing in the glutaminase activity. Three glutaminase isoenzymes are expressed in most tissues (liver- type glutaminase, kidney -type glutaminase and glutaminase C), but not much is known about the necessity of each isoform for the tumor metabolism. Several recent papers have defined the role of glutaminolysis or glutamine metabolism in mTOR activation. So it is a valid hypothesis to speculate that mTOR can counter-regulate glutaminase. Thus, we decided to investigate whether mTOR can control glutaminase activity. To this end, we have made MDA - MB 231 cells stably knocked down for PTEN and verified no alteration in KGA and GAC protein levels, as well as there was no change on their subcellular location. Enzyme kinetics of the MDA-MB 231 mitochondrial fraction revealed that PTEN knockdown led to a decrease in the KM of the enzyme without changing Vmax. Accordingly, the treatment with rapamycin (mTOR inhibitor), led to an increase in KM back to the level detected in control cells. The glutaminase activity of MDA - MB 231, NIH 3T3, IMR90 and BJ5TA total cellular lysates was also affected by rapamycin treatment in a dose- and time-response fashion. Moreover, glucose, glutamine and growth factors deprivation promoted mTOR inhibition and concomitant reduction on glutaminase activity. Glutaminase activity of MDA-MB 231 cells knocked down for GAC, KGA or GAC/KGA and treated with rapamycin indicated that mTOR can regulate both isoforms. Curiously, it was only on GAC or GAC/KGA knocked down cells that we observed a decrease in S6K Thr 389 phosphorylation, which could indicate that GAC or the GAC dependent-glutamine metabolism is a specific mTOR counter-regulator. Accordling, stable TSC2 knockdown in MDA-MB 231 and BJ5TA, as well as TCS2 knockout in MEF cells, promoted overstimulation of mTOR and increasing on glutaminase activity. Moreover, a comparison between PC3 and DU145 revealed that DU145 has higher GAC expression, greater consumption of glutamine, is more dependent on glutamine for its growth, more sensitive to the inhibitor of glutaminase, BPTES, and more responsive to metformin, an indirect AMPK activator. The activation of AMPK by metformin, a known energy stress sensor, led to a decreased glutaminase activity in the prostate tumor cell line DU145 indicating a potential role of AMPK on glutaminase activity (AU)

FAPESP's process: 11/13981-4 - Understanding the cell signalization pathways that impact on glutaminase activity
Grantee:Carolline Fernanda Rodrigues Ascenção
Support Opportunities: Scholarships in Brazil - Master