Time series analysis of remote sensing images for anomaly detection
AnImaLS: Annotation of Images in Large Scale: what can machines and specialists le...
A study of spectral indices and visual characteristics for green coverage classifi...
![]() | |
Author(s): |
Jefersson Alex dos Santos
Total Authors: 1
|
Document type: | Doctoral Thesis |
Press: | Campinas, SP. |
Institution: | Universidade Estadual de Campinas (UNICAMP). Instituto de Computação |
Defense date: | 2013-03-25 |
Examining board members: |
Ricardo da Silva Torres;
Sylvie Philipp Foliguet;
William Robson Schwartz;
Siome Klein Goldenstein;
Franck Jocelyn Chanussot
|
Advisor: | Alexandre Xavier Falcão; Ricardo da Silva Torres |
Abstract | |
A huge effort has been made in the development of image classification systems with the objective of creating high-quality thematic maps and to establish precise inventories about land cover use. The peculiarities of Remote Sensing Images (RSIs) combined with the traditional image classification challenges make RSI classification a hard task. Many of the problems are related to the representation scale of the data, and to both the size and the representativeness of used training set. In this work, we addressed four research issues in order to develop effective solutions for interactive classification of remote sensing images. The first research issue concerns the fact that image descriptors proposed in the literature achieve good results in various applications, but many of them have never been used in remote sensing classification tasks. We have tested twelve descriptors that encode spectral/color properties and seven texture descriptors. We have also proposed a methodology based on the K-Nearest Neighbor (KNN) classifier for evaluation of descriptors in classification context. Experiments demonstrate that Joint Auto-Correlogram (JAC), Color Bitmap, Invariant Steerable Pyramid Decomposition (SID), and Quantized Compound Change Histogram (QCCH) yield the best results in coffee and pasture recognition tasks. The second research issue refers to the problem of selecting the scale of segmentation for object-based remote sensing classification. Recently proposed methods exploit features extracted from segmented objects to improve high-resolution image classification. However, the definition of the scale of segmentation is a challenging task. We have proposed two multiscale classification approaches based on boosting of weak classifiers. The first approach, Multiscale Classifier (MSC), builds a strong classifier that combines features extracted from multiple scales of segmentation. The other, Hierarchical Multiscale Classifier (HMSC), exploits the hierarchical topology of segmented regions to improve training efficiency without accuracy loss when compared to the MSC. Experiments show that it is better to use multiple scales than use only one segmentation scale result. We have also analyzed and discussed about the correlation among the used descriptors and the scales of segmentation. The third research issue concerns the selection of training examples and the refinement of classification results through multiscale segmentation. We have proposed an approach for xix interactive multiscale classification of remote sensing images. It is an active learning strategy that allows the classification result refinement by the user along iterations. Experimental results show that the combination of scales produces better results than isolated scales in a relevance feedback process. Furthermore, the interactive method achieves good results with few user interactions. The proposed method needs only a small portion of the training set to build classifiers that are as strong as the ones generated by a supervised method that uses the whole available training set. The fourth research issue refers to the problem of extracting features of a hierarchy of regions for multiscale classification. We have proposed a strategy that exploits the existing relationships among regions in a hierarchy. This approach, called BoW-Propagation, exploits the bag-of-visual-word model to propagate features along multiple scales. We also extend this idea to propagate histogram-based global descriptors, the H-Propagation method. The proposed methods speed up the feature extraction process and yield good results when compared with global low-level extraction approaches (AU) |