Advanced search
Start date
Betweenand


Cationic liposomes as carriers of mRNA from tumor cells for cancer immunotherapy

Full text
Author(s):
Micaela Tamara Vitor
Total Authors: 1
Document type: Master's Dissertation
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Faculdade de Engenharia Química
Defense date:
Examining board members:
Lucimara Gaziola de la Torre; José Alexandre Marzagão Barbuto; Nelson Eduardo Duran Caballero
Advisor: Lucimara Gaziola de la Torre; Patrícia Cruz Bergami Santos
Abstract

This research aimed at the technological development of a liposomal vaccine containing tumor RNA for cancer immunotherapy. In this strategy, total RNA encoding the Her-2/neu tumor antigen extracted from cell line of human breast adenocarcinoma SK-BR-3 were incorporated into cationic liposomes, which were introduced in vitro into dendritic cells (DCs). DCs vaccine has the function of helping the immune system to identify tumor antigens in order to eliminate cancerous cells. However, one of the critical steps is the introduction (transfection) of RNA in DCs. Cationic liposomes are a promising alternative, because besides activating DCs, they are able to mediate transfection of nucleic acids into cells. Previous work of our research group in the cationic liposomes field developed a liposomal nanostructure obtained by a scale up process containing DNA vaccine against tuberculosis. In this context, this work evaluated the cationic liposomes composed by egg phosphatidylcholine (EPC), 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) and 1,2-dioleoylphosphatidylethanolamine (DOPE), at 50/25/25% molar proportion respectively. Methodologically, the present work was carried out in four mean steps: in the first step, it was carried out an overview of all work, showing the relevancy of cationic liposomes complexed with RNA for cancer immunotherapy. The second part of this work investigated the effects of liposomes produced via laboratory process upon DCs differentiation/maturation in vitro and induction of T lymphocytes proliferation by DCs stimulated with these liposomes, resulting in cationic liposomes incorporated by DCs, capable to activate DCs in vitro and to induce proliferation of T lymphocytes. The third part of the work aimed at optimizing the production of cationic liposomes obtained via the ethanol injection method using statistical tools, obtaining liposomes with smaller size and polydispersity, which demonstrated to be incorporated and activate DCs in vitro and to induce T lymphocytes proliferation. The last step refers to the study of RNA incorporation in the cationic liposomes produced via optimized scalable process compared to the laboratory process in order to be internalized by DCs, transfected RNA and to induce T lymphocytes proliferation by DCs. The results showed that the complexes were internalized by DCs and they are able to induce T lymphocytes proliferation, however we still have to obtain the optimal transfection condition. In sum, we conclude that the cited cationic liposomes can be used as a potential tool in further strategies in cancer immunotherapy (AU)

FAPESP's process: 10/13818-3 - Cationic liposomes as carriers of mRNA from tumor cells for cancer immunotherapy
Grantee:Micaela Tamara Vitor
Support Opportunities: Scholarships in Brazil - Master