Advanced search
Start date
Betweenand


An efficient algorithm for the natural wireless localization problem

Full text
Author(s):
Bruno Espinosa Crepaldi
Total Authors: 1
Document type: Master's Dissertation
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Instituto de Computação
Defense date:
Examining board members:
Cid Carvalho de Souza; Carlile Campos Lavor; Zanoni Dias
Advisor: Cid Carvalho de Souza; Pedro Jussieu de Rezende
Abstract

Considered a variation of the art gallery problem, the wireless localization problem deals with the placement of the smallest number of broadcasting antennas required to determine if someone is inside or outside the gallery. Each antenna propagates a unique key within a certain antenna-specific angle of broadcast, so that the set of keys received at any given point is sufficient to determine whether that point is inside or outside the polygon that represents the gallery. To ascertain this localization property, a Boolean formula must be produced along with the placement of the antennas. We say that the antennas are in natural position if they are located at the vertices or the edges of the polygon and transmitting their signals in the angle formed by the sides of the polygon at the point where the antenna is positioned. The natural wireless localization problem is NP-hard. In this dissertation, we present an exact algorithm to solve it. To this end, we propose an initial integer linear programming model for the problem that, after being computed by a commercial solver, proved to be capable of finding optimal solutions for instances corresponding to polygons with tens of vertices. Then, through studies of geometric properties, several improvements are introduced in the mathematical model and also in the way of computing it. As a result of this research, we develop an iterative algorithm based on integer linear programming with which we can solve the problem for considerably larger instances. The efficiency of our algorithm is certified by experimental results comprising the solutions of 720 instances, including polygon with holes with up to 1000 vertices, in less than six minutes on a standard desktop computer (AU)

FAPESP's process: 12/17608-9 - Wireless Localization Problem: a geometric and algorithmic study
Grantee:Bruno Espinosa Crepaldi
Support Opportunities: Scholarships in Brazil - Master