Classical and Nonclassical Congenital Adrenal Hyperplasia: Identification of new m...
Congenital adrenal hyperplasia: new mutations and their effects on the enzymatic a...
![]() | |
Author(s): |
Fernanda Caroline Soardi
Total Authors: 1
|
Document type: | Doctoral Thesis |
Press: | Campinas, SP. |
Institution: | Universidade Estadual de Campinas (UNICAMP). Instituto de Biologia |
Defense date: | 2008-11-07 |
Examining board members: |
Maricilda Palandi de Mello;
Ericka Barosa Trarbach;
Marly Aparecida Spadotto Balarin;
Sofia Helena Valente de Lemos Marini;
Ângela Maria Spínola Castro
|
Advisor: | Anna Wedell; Maricilda Palandi de Mello |
Abstract | |
Deficiency of CYP21A2 enzyme is responsible for more than 90% of congenital adrenal hyperplasia (CAH) followed by the deficiency of CYP11B1, which is responsible for 5-8% of the cases. The deficiency of CYP21A2 is normally classified in clinical forms that vary from a mild non-classical (NC) to a severe classical form, which can manifest as salt wasting (SW) or as simple virilizing (SV). Depending on the severity of phenotype, deficiency of CYP11B1 can be classified in classical or non-classical forms. In both deficiencies the clinical forms are associated with different mutations or combination of mutations, which may or may not be originated from the homologous genes. The aim of this study was to identify novel or rare mutations in alleles of 31 patients with CYP21A2 deficiency. Using site-direct mutagenesis strategies, nucleotide variants were introduced into the cDNA and the novel p.G56R, p.L107R and p.L142P and rare p.H62L, p.H62L+p.P453S and p.R408C protein variants of CYP21A2 were expressed to compare the enzymatic activity between the wild-type and mutant proteins. Furthermore, splicing activities were investigated for IVS2+5G>A, IVS2-2A>G, IVS4-15A>C+IVS4-8C>T+p.D183E sequence CTP21A2 variations and for g.1753G>A on CYP11B1 gene by minigene constructions. The analysis of enzymatic conversion of both CYP21A2 substrates, 17-hydroxyprogesterone and progesterone, into 11-desoxycortisol and corticosterone, respectively, showed low levels of residual activities for p.L107R, p.L142P and p.R408C, which were classified as SW mutations. Whereas, the result of enzyme activity for p.G56R indicated that it might be a SV-related mutation due a residual activity of 1.4% toward progesterone as substrate. The p.H62L was associated to p.P34L mutation in a chimeric gene present in a 30-kb deletion allele in Brazilian patients. In Scandinavian patients, the p.H62L mutation was found associated to the p.P453S which is known as a NC mutation. The p.H62L itself showed an activity within the range of NC mutations. The apparent kinetic constant confirmed this classification. A synergistic effect was observed for the allele bearing the p.H62L+p.P453S combination as it had caused a significant reduction in the enzymatic activity bringing it to the borderline level between SV and NC mutations. On the minigene analyses for CYP21A2, the IVS2+5G>A variation showed skipping of exon 2, therefore this alteration was classified as SW mutation. Likely, IVS2-2A>G was considered as a SW mutation due to the insertion of 19 nucleotides from intron 2 into the resulting mRNA, which changed the reading frame and created a premature stop codon. Conversely, the group of variations IVS4-15A>C+IVS4-8C>T+p.D183E did not affect the normal splicing of CYP21A2 mRNA. In the CYP11B1 minigene analysis, the g.1753G>A nucleotide variation was classified as responsible for the classical form of deficiency. An alternative splicing due to disruption of the normal donor site was used and the skipping of the last 45 nucleotides of exon 4 was observed. This alteration modified the mRNA reading frame and created a premature stop codon. The elucidation of functional and structural characters of the steroidogenic gene mutations led to the establishment of a correct genotype-phenotype in most patients studied. (AU) |