Advanced search
Start date
Betweenand


Thermodynamic and applications of ionic liquids

Full text
Author(s):
Víctor Hugo Alvarez Alvarez
Total Authors: 1
Document type: Doctoral Thesis
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Faculdade de Engenharia Química
Defense date:
Examining board members:
Martín Aznar; Silvana Mattedi e Silva; Roberta Ceriani; Ricardo Belchior Tôrres
Advisor: Martín Aznar; Rubens Maciel Filho
Abstract

The ionic liquids are an interesting alternative to improve processes with ecological and economic goals. This research aims to study the physicochemical properties of aprotic and aprotic ionic liquids, pure or in binary mixtures with esters and aldehydes, such as density, sound velocity, viscosity, refractive index and thermal decomposition temperature. Furthermore, it is analized the thermodynamic behavior of some applications of ionic liquids as vapor-liquid equilibrium, gas absorption, and liquid-liquid equilibrium. Initially, eleven protic ionic liquids were synthesized using hydroxylethylamine molecules in the cation and organic acid molecules with alkyl chains of different sizes in the anion. The physicochemical properties in pure and in mixtures of ionic liquids indicate the formation of agregates with more than two carbons in the anion. The protic ionic liquid containing the formate anion is unstable, forming an ester over time. In pure ionic liquids, the density decreases with increasing temperature or alkyl chain of the anion, the viscosity decreases with increasing temperature, but increases with increasing alkyl chain anion. In the results of binary mixtures of ionic liquids with aldehydes and esters, it is shown that ionic liquids based on ammonium cation are partly insoluble in aldehydes ans soluble in esteres, but for the ionic liquid based on imidazolium was the opposite. In the vapor-liquid equilibrium at low pressures of binary systems, there is a increase of the boiling point of the aldehyde or ester influenced by the concentration of ionic liquid. It changes the azeotropic point of ethanol-water mixture. In the vapor and liquid at high pressures, more CO2 is absorbed in the protic ionic liquids than in aprotic ionic liquids. This is especially shown in those containing acetate anion, indicating quimisorption with this functional group. In liquid-liquid equilibrium of ternary system ionic liquid + dibenzothiophene + n-dodecane, it is observed that the ionic liquids based on ammonium cation can be extracted dibenzothiophene from n-dodecane. Both as an ionic liquid based on imidazolium cation of more complex structure. In studies of absorption from a CO2 flow in two protic ionic liquids at ambient pressure, the variables limiting the absorption were the temperature and flow rate. Data from the vapor-liquid equilibrium and density of binary mixtures were correlated using the equation of state of Peng-Robinson with the mixing rule of Wong-Sandler/GE. For the calculation of GE, it was implemented thermodynamic models as NRTL, UNIQUAC and COSMO-SAC. For the vapor-liquid equilibrium, the deviations in the prediction and correlation were lower than 2.5% and 1.5%, respectively. For the mixture density, the deviations in the prediction were lower than 2.7%. Therefore, the ionic liquids an the applications studied demonstrate that these new compounds are reliable to yield new processes and the current thermodynamic models can represent these processes with accuracy (AU)