Advanced search
Start date
Betweenand


Local structure study of the family RMn205 (R=Bi, Tb, Gd,Pr)

Full text
Author(s):
Gilberto Fernandes Lopes Fabbris
Total Authors: 1
Document type: Master's Dissertation
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Instituto de Física Gleb Wataghin
Defense date:
Examining board members:
Gustavo de Medeiros Azevedo; Valmor Roberto Mastelaro; Carlos Manuel Giles Antunez de Mayolo
Advisor: Gustavo de Medeiros Azevedo; Eduardo Granado Monteiro da Silva
Abstract

Multiferroic materials present, at the same temperature, at least two of the so-called ferroic properties: (anti) ferroelectricity, (anti) ferromagnetism and ferroelasticity. They have attracted great attention in the last few years due to their potential applications as well as from the basic science point of view, given the intricate coupling between their physical properties, which remains poorly understood. In this work, we have focused on the study of the RMn2O5 family multiferroic materials. Their crystalline structure belongs to the Pbam orthorhombic space group, with an antiferromagnetic and ferroelectric phase transition temperatures below 40 K and 39K, respectively. Such ferroelectric phase is incompatible with the inversion center of symmetry in the Pbam space group. Recently published EXAFS results for TbM n2O5 revealed a first coordination shell with a bimodal Tb-O bond length distribution. Such bond length splitting is temperature-independent and may be related to a change of the Pbam space group. Such results were our main motivation to undertake a systematic study of the local structure of the RMn2O5 multiferroic family, aiming at a better understanding the correlation between the ion R and the local structure. Mn K-Edge and R-ion L3 Edge (R=Bi, Gd, Pr, Tb) temperature-dependent XAFS measurements were performed at the Brazilian Synchrotron Light Laboratory XAFS2 beam line. Results for the Mn K-edge in all studied compounds reveal the Mn-O coordination polyhedral are rigid. The R-ion results reveal distinct behaviours. For the R=Bi compound, we identified that low energy Mn-O rigid unit vibrational modes are likely to be operative. For the other compounds, we have identified a rigid distortion of the Mn-O polyhedra. The distinct behavior of the BiMn2O5 seems to be related to the Bi 6s2 lone pair (AU)

FAPESP's process: 07/06289-1 - XAFS investigation of the local structure of multiferroic materials
Grantee:Gilberto Fernandes Lopes Fabbris
Support Opportunities: Scholarships in Brazil - Master