Advanced search
Start date
Betweenand


Functional studies on cerato-platanins and necrosis- and ethyleneinducing proteins from the causal agent from the witches' broom disease of cocoa, Moniliophthora perniciosa

Full text
Author(s):
Mario Ramos de Oliveira Barsottini
Total Authors: 1
Document type: Master's Dissertation
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Instituto de Biologia
Defense date:
Examining board members:
Gonçalo Amarante Guimarães Pereira; Rafael Victório Carvalho Guido; Celso Eduardo Benedetti
Advisor: Gonçalo Amarante Guimarães Pereira; Sandra Martha Gomes Dias
Abstract

Moniliophthora perniciosa is the causal agent of Witches' Broom Disease of cocoa and a major agroeconomic concern in Brazil and Latin America. In order to efficiently control this disease, it is crucial to understand the molecular basis underlying its progression. During the attack to the plant, a pathogen releases molecules to suppress or alter the regular defense response of the host. Results obtained from the genome sequencing of M. perniciosa lead to the identification putative virulence factors belonging to the Cerato-platanin protein family (MpCPs), and to the Necrosis- and Ethylene-inducing Proteins (MpNEPs). CPs are important to fungus-host interaction process, acting as toxins, defense response-inducing molecules or allergens. NEPs are toxin-like pore-forming proteins, which affect only dicot plants. This project aimed at the functional characterization of the MpCPs and MpNEPs, as well as understanding their importance for the Witches' Broom Disease progression. Twelve MpCP-coding genes were identified, and comprehensive transcriptome and phylogenetic analyses showed a correlation between MpCPs evolutionary clusters and their expression patterns throughout the disease. Four representative MpCPs had their crystal structure resolved. Biophysical and biochemical characterizations showed a correlation between the MpCP clusters, regarding sugar (N-acetylglucosamine) binding and protein self-assembling, which are possibly related to plant defense response suppression and hyphal growth, respectively. As for the MpNEPs, only the isoform MpNEP2 was shown to be expressed during the Whitches' Broom Disease. Its crystalloghaphic structure, along with site-directed mutagenesis and functional assays revealed that, besides the protein's active site, an hydrophobic hairpin exposed to te solvent is important to the necrosis-promoting activity, probably mediating the contact of MpNEP2 with the cell membrane (AU)

FAPESP's process: 10/14504-2 - Functional studies of the fungus Moniliophthora perniciosa ceratoplatanins based on structural analysis
Grantee:Mario Ramos de Oliveira Barsottini
Support Opportunities: Scholarships in Brazil - Master