Advanced search
Start date
Betweenand


Determination of process parameters in the various steps of the supercritical extraction of natural products: Artemisia annua, cordia verbenacea, Ocimum selloi e Foeniculum vulgare

Full text
Author(s):
Socrates Quispe Condori
Total Authors: 1
Document type: Doctoral Thesis
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Faculdade de Engenharia de Alimentos
Defense date:
Examining board members:
Maria Angela de Almeida Meireles Petenate; Pedro Melillo de Magalhães; Vera Lucia Garcia; Fernando Antonio Cabral; Elisabete da Costa Rodrigues
Advisor: Maria Angela de Almeida Meireles Petenate; Paulo de Tarso Vieira e Rosa
Abstract

In the present work a global study of the extraction of natural products using supercritical carbon dioxide as solvent is presented. The two steps of the SFE process were studied using several raw materials. In the Extraction Step (Artemisia annua, Cordia verbenacea and Ocimum selloi), global yield data for the three plants were determined. Kinetic parameters of the extraction process were calculated for the CO2 + A. annua and CO2 + C. verbenacea systems and a mathematical model to represent the overall extraction curves was selected. The fractional extraction technique was applied for the CO2 + C. verbenacea and CO2 + Ocimum Selloi systems. The determination of the global yield allowed to identify the effect of the temperature and pressure on the solubility of the extract, besides providing necessary information for the modeling of the extraction process. The operational condition that maximized the global yield in the systems CO2 + A. annua and CO2 + C. verbenacea was 300 bar / 50 °C. However, it was demonstrated that the C. verbenacea extract obtained at this condition shows a lower anticancer activity than that obtained at 200 bar / 40 °C. The higher global yield for the CO2 + Ocimum Selloi system was obtained at 200 bar / 40 °C. In the study of the kinetic of the extraction process for the CO2 + A. annua system, it was verified that the flow rate was the only significant factor on the kinetic parameters. In the study of the effect of the extraction bed height for the CO2 + C. verbenacea system, it was verified that the kinetic parameters increase with the bed height. The Naik et al. [1989] (empirical), Sovová [1994] and Goto et al. [1993] models presented the best fittings to the experimental overall extraction curves (OEC) for the CO2 + A. annua and CO2 + C. verbenacea systems. From the study of the effect of the height of the bed for the C. verbenacea, it was verified that the selection of a mathematical model to scale-up is difficult to be accomplished, because the selected model is not always valid for all experiments. In the Separation Step (Foeniculum vulgare) the study of the influence of the operational conditions (temperature, pressure and flow rate) in the recovery of the extract was carried out. The temperature and pressure of the separation step was calculated through thermodynamic modeling using the equation of state of Peng-Robinson. The determination of the solubility behavior of anethole and oleic acid (major compounds of the F. vulgare extract) with supercritical CO2 allowed to obtain an approximation of the optimal condition of the separation step. In the study of the influence of temperature and pressure, it was determined that the increase of pressure in the first separator allows the solubilization of high molecular mass compounds that are transferred to the second separator. However, if the objective is the fractionation of the fennel extract, it was observed that the best operational condition to separate a rich fraction in volatile oil compounds was 80 bar / 40°C. Additionally, it was verified that the increase of flow rate diminishes the anethole and fenchone yields and, consequently, the global yield. The optimization of the operational conditions in the separation of the mixture extract + solvent is an important step in the supercritical extraction of natural products, because it will allow an optimal recovery and/or fractionation of the extract (AU)