Advanced search
Start date
Betweenand


Participation of sirtuin on diabetic retinopathy: mechanisms of regulation of the neurodegeneration

Full text
Author(s):
Diego Andreazzi Duarte
Total Authors: 1
Document type: Doctoral Thesis
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Faculdade de Ciências Médicas
Defense date:
Examining board members:
Jacqueline Mendonça Lopes de Faria; Maria Cristina de Oliveira Izar; Silvana Allodi; Neura Bragagnolo; José Paulo Cabral de Vasconcellos
Advisor: Jacqueline Mendonça Lopes de Faria; Jose Butori Lopes de Faria
Abstract

The diabetic retinopathy (RD) is a devastating disease and the principal cause of blindness among people in adulthood worldwide. The RD is considered a multifactorial and progressive disease, affecting neuronal and glial cells, and also vascular elements of the retina. It is known that several pathways are involved in the pathogenesis of RD, however, the mechanisms that lead to exacerbation of inflammation and death of glial/neuronal cell, characterizing retinal neurodegeneration, remain unknown. Therefore, the reduction of these factors have been extensively studied as a therapeutic target against RD. Sirtuin 1 (SIRT1), a family of histone deacetylase enzyme, acts in response to various stresses and, currently, has been related to important molecular functions in the regulation of various diseases. Considered a redox-sensitive, SIRT1 may be reduced under disease condition, whereby aggravate the pathological situation. However, is not known the mechanism of modulation/activity of SIRT1 in neurodegenerative diseases, such as RD. In the article I, were studies the possible protective effects of cocoa in the diabetic retina were assessed. rMCs exposed to NG, HG or H2O2 were submitted to cocoa treatment in the presence or absence of SIRT-1 inhibitor and siRNA. The experimental animal study was conducted in streptozotocin-induced diabetic rats and randomized to receive low, intermediate, or high polyphenol cocoa treatments via daily gavage for 16 weeks (i.e., 0.12 mg/kg/day, 2.9 mg/kg/day, or 22.9 mg/kg/day of polyphenols). The rMCs exposed to HG or H2O2 exhibited increased GFAP and acetyl-RelA/p65 and decreased SIRT1 activity/expression. These effects were cancelled out by cocoa, which decreased ROS production and PARP-1 activity, augmented the intracellular pool of NAD+, and improved SIRT1 activity. The rat diabetic retinas displayed the early markers of retinopathy accompanied by markedly impaired electroretinogram. The presence of diabetes activated PARP-1 and lowered NAD+ levels, resulting in SIRT1 impairment. This augmented acetyl RelA/p65 had the effect of upregulated GFAP. Oral administration of polyphenol cocoa restored the above alterations in a dose-dependent manner. This study reveals that cocoa enriched with polyphenol improves the retinal SIRT-1 pathway, thereby protecting the retina from diabetic milieu insult. In the article II, were investigated the possible therapeutic effect of cells derived from control (db/m) and spontaneously diabetic (db/db) mice on diabetic retinopathy. The db/db mice with 8 weeks of age were randomized to receive a unique intravenous injection of PBS or 0,5x105 db/m EOCs or 0,5x105 db/db EOCs. Four weeks later, the animals were euthanized and the eyes enucleated. For in vitro study, EOC-CM was generated from db/m and db/db EOCs cultures. rMCs were exposed for 24h to NG or HG combined or not with db/m or db/db EOC-CMs. In diabetic rats, there was an increase of DR and oxidative damage markers, accompanied by decrease in SIRT1 protein followed by lysine-310-p65-NF?B acetylation. The treatment with cells from db/m significantly reduced all the above-mentioned, but interestingly the treatment with cells from db/db mice fully restored the above alterations to normal levels. rMCs exposed to HG displayed GFAP and VEGF expression up regulated, accompanied by increase in Nox4 expression and ROS levels, and acetyl-lysine-310-p65-NF?B. SIRT1 protein expression and activity were markedly reduced in diabetic milieu conditions. The treatment with both EOC-CMs prevented all these abnormalities, but db/db EOC-CM fully restored to NG conditions. This study demonstrates that endocrine capacity of EOCs is effective in improving retinal SIRT1 pathway thus protecting the retina from diabetic milieu insult. In summary, compelling novel evidence is provided herein that either through oral administration of polyphenol enriched cocoa or cell therapy with EOCs, conferred retinal neuroprotection against diabetic insults in animal models. The identification of SIRT-1 as a potential therapeutic target in the treatment of diabetic retinopathy may provide new perspective in the pharmacological treatment of this diabetic complication (AU)

FAPESP's process: 10/20471-0 - Is it possible to prevent the experimental diabetic retinopathy through the use of the cacao? Evaluation of antioxidant mechanisms and the bioavailability of nitric oxide
Grantee:Diego Andreazzi Duarte
Support Opportunities: Scholarships in Brazil - Doctorate (Direct)