Production of functionalized polymeric blends of lignin extracts from plant biomas...
![]() | |
Author(s): |
Fabiana Pires de Carvalho
Total Authors: 1
|
Document type: | Doctoral Thesis |
Press: | Campinas, SP. |
Institution: | Universidade Estadual de Campinas (UNICAMP). Instituto de Química |
Defense date: | 2010-03-22 |
Examining board members: |
Maria Isabel Felisberti;
Ana Maria Rocco;
Cristina Moniz Araujo Lopes;
Maria do Carmo Gonçalves;
Edvaldo Sabadini
|
Advisor: | Maria Isabel Felisberti |
Abstract | |
In this work, blends of the poly(methyl methacrylate), PMMA, and the poly[acrylonitrile-g-(ethylene-co-propylene-co-diene)-g-styrene], AES, were prepared. AES is a complex mixture of poly(styrene-co-acrylonitrile), SAN, and poly(ethylene-copropylene-co-diene), EPDM, and the graft copolymer EPDM-g-SAN. Blends PMMA-AES were obtained by polymerization in situ, varying the solvent, the agitation and the inert atmosphere in order to evaluate their influence on the morphological and structural properties of the blends. The blends were characterized by infrared spectroscopy (FTIR), carbon-13 nuclear magnetic resonance (C NMR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic mechanical analysis (DMA) and Izod impact resistance test. The results showed that the PMMA-AES blends are immiscible and present a complex morphology. The morphology of some PMMA-AES blends is made up of an elastomeric dispersed phase in the glassy matrix, with inclusion of the matrix in the EPDM domains, suggesting core shell or salami morphology. However, this morphology is affected by the moulding injection process, due the temperature and shear effects. The selective extraction of the blends¿ components and the infrared spectroscopy showed that crosslinked and/or grafting reactions occur on EPDM chains during MMA polymerization. The syndiotactic PMMA obtained in the presence of AES increases with the amount of AES, due to the possible interaction among the carbonyl groups of PMMA and the nitrile or phenyl groups of SAN copolymer. The mechanical properties of the blends were influenced by the composition of the blend and the impact strength of the blends is superior to near PMMA. Photochemical aging tests showed that PMMA-AES blends presented decrease in the impact strength after aging (AU) |