Advanced search
Start date
Betweenand


Molecular analysis Ataxin 1

Full text
Author(s):
Kalinca Patrícia Marengo Santos
Total Authors: 1
Document type: Doctoral Thesis
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Faculdade de Ciências Médicas
Defense date:
Examining board members:
Íscia Teresinha Lopes Cendes; Almir de Sousa Martins; Paulo Henrique Condeixa de França; Cláudia Vianna Maurer Morelli; Fábio Rossi Torres
Advisor: Íscia Teresinha Lopes Cendes
Abstract

Molecular analysis of proteins is a critical component to understanding the molecule as a whole and its interactions with other molecules in cellular mechanisms. The role of a protein in the cellular context provides information essential to understanding the biological mechanisms that cause many inherited diseases whose treatment or cure are unknown. For these causes are elucidated it is necessary to understanding the processes of cell function, which ultimately depends essentially on the discovery of protein-protein interactions in cellular environment. Within this context, it is great interest in the proteins involved in the mechanisms causing a class of hereditary neurodegenerative diseases by repeats of polyglutamine (poliQ), the spinocerebellar ataxias (SCAs). Among them our interest fell on the protein related to the disease spinocerebellar ataxia type 1 (SCA1). The mutation responsible for SCA1 was attributed to unstable expansions of poliQ located in the coding region of ATX1 gene that encodes a protein ataxin 1. Ataxin- 1 shows between 782-869 amino acids depending on the number of glutamine, has a molecular mass of approximately 100 kDa, and is usually a predominantly cytoplasmic protein. However, in pathological states it seems to aggregate in the nucleus of neurons of patients with SCA1 (Paulson et al., 1997). The exact role of the protein ataxin-1 standard is still unknown, although evidence suggests that its function may be linked to transcription factors (Tsai et al., 2004). The same applies to the only area identified and characterized in ataxin named AXH (De Chiara et al., 2005), which displays a significant similarity to HBP1 protein that acts as an activator of transcription for several genes (Levender et al., 1997; Tevosian et al., 1997). In this study, the main objective is to express and purify the AXH domain of ataxin-1 protein in normal and mutated forms in order to characterize this region in terms of some of its molecular properties with the application of the techniques of circular dichroism and X-rays of low angle (AU)