Advanced search
Start date
Betweenand


Enzymatic synthesis of structured lipids, application of membrane and SCCO2 technology for obtention and purification

Full text
Author(s):
Juliana Maria Leite Nobrega de Moura
Total Authors: 1
Document type: Doctoral Thesis
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Faculdade de Engenharia de Alimentos
Defense date:
Examining board members:
Lireny Aparecida Guaraldo Gonçalves; Regina C. A Lago; Thais Maria Ferreira de Souza Vieira; Jose Carlos C Petrus; Luiz Antonio Viotto; Renato Grimaldi
Advisor: Lireny Aparecida Guaraldo Gonçalves
Abstract

Specific-structured lipids (SL) are a lipid source with high nutritional value due to changes in its glycerol backbone's fatty acid composition and specific distribution aiming medical, nutritional and food applications. This study had as objective the production of SL through enzymatic interesterification between medium chain triacylglycerol (MCT) and long chain fatty acid ethyl esters (LCFAEt) applying membrane technology, with or without supercritical fluid technology for synthesis and/or SL purification. The production conditions of LCFAEt, used to obtain SL, were optimized according to an experimental planning (23). Ethyl esters' conversion rate was 95%, at 40°C, 1% NaOH, 36% ethanol, running 5 minutes under 600rpm stirring speed. Reaction parameters like water activity (aw), moisture absorbent (10%w/w), molar ratio between substrates of 1:2 e 1:4 (MCT/LCFAEt) and types of enzymes (Lipozyme TL 1Mand RM 1M)were evaluated according to their influences on the SL interesterification in the batch reactor, at 60°C. The best incorporation results were obtained using Lipozyme TL 1Mwith aw between 0,30- 0,43.and molar ratio of 1:4. 10% (p/p) of moisture absorbent the interesterification kinetic presented a discreet increase. The impact of the enzyme conditioning process in the blend and the influence of the molar ratio of substrates were evaluated in the pilot reactor system. The usage of the enzyme with original water activity (0,33) provided higher kinetic incorporation in comparison with the conditioned enzyme, for a reaction time of 30 hours, 67 and 48%, respectively. The increase in the molar ratio of substrates from 1:3 to 1:4 improved the kinetic incorporation and reduced the maximum incorporation reaction time (66,6%) from 30 to 10 hours. The usage of membrane technology in the enzymatic system to obtain SL was evaluated in a plain membrane reactor (polymeric) under 60°C temperature; 600rpm stirring speed; Lipozyme TL 1M enzyme (5% based on substrates' weight) and molar ratio of substrates of 1:3(MCT/LCFAEt). The application of membranes increased the kinetic incorporation of LCFAEt in the MCT afier 54 hours of reaction. In the end of 102 hours incorporation was 70 and 57%, with and without membrane in the reactor, respectively. The final SL, obtained with and without membrane, showed fatty essential acids composition of 23,5 and 11,7%, respectively. However, the ratio between the essential fatty acids 00-6/00-3was not significantly different. The coupling of the membrane filtration process and fluidification by supercritical carbon dioxide (SCCO2) was also evaluated. The enzyme (Candida antartica) was immobilized on the membrane support (a-alumina) by covalent attachment to a gelatin/PEI layer previously adsorbed. Tests were performed at 60°C and O,O5MPa of transmembrane pressure. CO2 pressures (PCO2) of 6, 12 and 18MPa were evaluated. This parameter showed a high influence in the kinetic interesterification, with highest incorporation value of LCFAEt in the MCT (34,5%) at 18MPa, being 24,7% of essential fatty acids. Tests to purify the SL by SCCO2extraction of the undesired solutes and triacylglycerol retention by reverse osmosis and nanofiltration membrane were also performed. PCO2 of 9, 11 and 13MPa and transmembrane pressure of 1, 2, 3 and 4MPa were evaluated at temperature of 40°C. Reverse osmosis membrane (BW-30) demonstrated good resistance to the pressure conditions and higher triacylglycerol retention. The increment in the PCO2 from 9 to 13MPa reduced the triacylglycerol retention factor by increasing solute's solubilization. The highest triacilglicerol retention factor was obtained at the lowest PCO2 (9MPa) and at low transmembrane pressure (O,7MPa). The membrane showed, in the initial time, triacylglycerol retention factor of 95% and the maximum value with 3 hours of filtration. The low temperature (40°C) usage in SL extraction and purification reactions provided good protection to the polyunsaturated fatty acids against the oxidation and acyl migration (AU)